激光与红外
激光與紅外
격광여홍외
LASER & INFRARED
2014年
10期
1174-1178
,共5页
异源图像匹配%相位一致性%梯度方向直方图%归一化互相关%归一化互信息
異源圖像匹配%相位一緻性%梯度方嚮直方圖%歸一化互相關%歸一化互信息
이원도상필배%상위일치성%제도방향직방도%귀일화호상관%귀일화호신식
heterogonous image matching%phase congruency%histograms of oriented gradients%normalized correlation%normalized mutual information
异源图像由于亮度和对比度差异较大,采用基于灰度和梯度信息的局部特征匹配方法匹配正确率较低。针对该问题,提出一种基于相位一致性和梯度方向直方图的异源图像匹配方法。该方法首先采用具有亮度和对比度不变性的相位一致性方法提取异源图像特征点和边缘图像,并以特征点为中心,选取100×100的边缘图像作为特征区域,统计梯度方向直方图,生成64维特征描述符;然后,选用归一化相关函数作为匹配测度,采用双点匹配方法选取一个特征点的两个较优的候选匹配点,并采用RANSAC方法进行匹配点提纯;最后,基于局部归一化互信息方法和最优化方法进行匹配点精确定位,提高匹配精度。实验结果表明,该方法在可见光、近红外、中波红外和长波红外等异源图像匹配中具有较好的匹配性能,平均匹配正确率高达88%,是SURF匹配方法的3.4倍。
異源圖像由于亮度和對比度差異較大,採用基于灰度和梯度信息的跼部特徵匹配方法匹配正確率較低。針對該問題,提齣一種基于相位一緻性和梯度方嚮直方圖的異源圖像匹配方法。該方法首先採用具有亮度和對比度不變性的相位一緻性方法提取異源圖像特徵點和邊緣圖像,併以特徵點為中心,選取100×100的邊緣圖像作為特徵區域,統計梯度方嚮直方圖,生成64維特徵描述符;然後,選用歸一化相關函數作為匹配測度,採用雙點匹配方法選取一箇特徵點的兩箇較優的候選匹配點,併採用RANSAC方法進行匹配點提純;最後,基于跼部歸一化互信息方法和最優化方法進行匹配點精確定位,提高匹配精度。實驗結果錶明,該方法在可見光、近紅外、中波紅外和長波紅外等異源圖像匹配中具有較好的匹配性能,平均匹配正確率高達88%,是SURF匹配方法的3.4倍。
이원도상유우량도화대비도차이교대,채용기우회도화제도신식적국부특정필배방법필배정학솔교저。침대해문제,제출일충기우상위일치성화제도방향직방도적이원도상필배방법。해방법수선채용구유량도화대비도불변성적상위일치성방법제취이원도상특정점화변연도상,병이특정점위중심,선취100×100적변연도상작위특정구역,통계제도방향직방도,생성64유특정묘술부;연후,선용귀일화상관함수작위필배측도,채용쌍점필배방법선취일개특정점적량개교우적후선필배점,병채용RANSAC방법진행필배점제순;최후,기우국부귀일화호신식방법화최우화방법진행필배점정학정위,제고필배정도。실험결과표명,해방법재가견광、근홍외、중파홍외화장파홍외등이원도상필배중구유교호적필배성능,평균필배정학솔고체88%,시SURF필배방법적3.4배。
The common local feature matching methods based on gradient histogram are difficult to match correctly due to the difference of contrast and luminance of heterogonous image. For solving this problem,the heterogonous image matching method was proposed based on the phase congruency and histograms of oriented gradients. Firstly,feature points and edge image of heterogonous images were extracted by using phase congruency method which has invariance of luminance and contrast,and then the 64-dimensional feature descriptor was generated by counting histograms of ori-ented gradients of squared feature area whose size is 1 00 ×1 00. Secondly,for matching heterogonous image pair,nor-malized correlation function is selected as similarity measure,and two better candidate matching point pairs of one fea-ture point was first selected by using dual-point matching method,then matching point pair was purified by using RANSAC method. Finally,the location of matching point was refined using optimization method and local normalized mutual information. The experimental results indicate that the proposed method can achieve higher performance in heterogonous image matching,the average matching correct rate is up to 88% and is 3.4 times of SURF matching method.