计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2014年
11期
3365-3368
,共4页
晁浩%杨占磊%刘文举
晁浩%楊佔磊%劉文舉
조호%양점뢰%류문거
语音识别%随机段模型%发音信息%阶层式人工神经网路%发音特征
語音識彆%隨機段模型%髮音信息%階層式人工神經網路%髮音特徵
어음식별%수궤단모형%발음신식%계층식인공신경망로%발음특정
speech recognition%stochastic segment model%articulatory information%hierarchical artificial neural network%articulatory feature
提出了一种基于随机段模型的发音信息集成方法。根据随机段模型的模型特性,建立了阶层式人工神经网络来获取语音段信号属于各类音素的后验概率,并通过一遍解码的方式集成到随机段模型系统中。在“863-test”测试集上进行的汉语连续语音识别实验显示汉语字的相对错误率下降了5.93%。实验结果表明了将发音信息应用到随机段模型的可行性。
提齣瞭一種基于隨機段模型的髮音信息集成方法。根據隨機段模型的模型特性,建立瞭階層式人工神經網絡來穫取語音段信號屬于各類音素的後驗概率,併通過一遍解碼的方式集成到隨機段模型繫統中。在“863-test”測試集上進行的漢語連續語音識彆實驗顯示漢語字的相對錯誤率下降瞭5.93%。實驗結果錶明瞭將髮音信息應用到隨機段模型的可行性。
제출료일충기우수궤단모형적발음신식집성방법。근거수궤단모형적모형특성,건립료계층식인공신경망락래획취어음단신호속우각류음소적후험개솔,병통과일편해마적방식집성도수궤단모형계통중。재“863-test”측시집상진행적한어련속어음식별실험현시한어자적상대착오솔하강료5.93%。실험결과표명료장발음신식응용도수궤단모형적가행성。
This paper proposed a framework which attempted to incorporate articulatory information into the stochastic segment model based on Mandarin speech recognition system.According to the characteristics of the stochastic segment model,it used hierarchical artificial neural network to obtain the posterior probability of speech signal belonging to the phonemes.Then,it integrated the posterior probability into the stochastic segment model system in the first search process.Experiments conducted on “863-test”set show that about 5 .93% relative improvement could be achieved in the recognition accuracy.Thus,it de-monstrates the feasibility of the method.