计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2014年
11期
3328-3332
,共5页
何云斌%张晓瑞%万静%李松
何雲斌%張曉瑞%萬靜%李鬆
하운빈%장효서%만정%리송
心电图信号%聚类%特征提取%K-means%遗传算法%模拟退火%属性权重%均方差%小波变换
心電圖信號%聚類%特徵提取%K-means%遺傳算法%模擬退火%屬性權重%均方差%小波變換
심전도신호%취류%특정제취%K-means%유전산법%모의퇴화%속성권중%균방차%소파변환
ECG signal%clustering%feature extraction%K-means%genetic algorithms%simulated annealing%attribute weights%MSE%wavelet transform
针对心电图自动诊断困难这一问题,提出了一种新的聚类算法:基于均方差属性加权的遗传模拟退火K-means改进聚类算法,用于改进心电图(ECG)信号的自动识别技术。利用小波变换的多分辨率和抗干扰能力好的特点,检测QRS波、P波、T波,提高了特征检测的准确性;利用聚类分析具有较好的鲁棒性和适合于大数据量分析的特点,对心电信号进行波形分类。采用MIT-BIH标准心电数据库中的部分数据对识别结果进行判断,改进后的K-means聚类算法的准确率高于传统的K-means聚类算法,实验表明该算法对心电信号可以进行有效分类。
針對心電圖自動診斷睏難這一問題,提齣瞭一種新的聚類算法:基于均方差屬性加權的遺傳模擬退火K-means改進聚類算法,用于改進心電圖(ECG)信號的自動識彆技術。利用小波變換的多分辨率和抗榦擾能力好的特點,檢測QRS波、P波、T波,提高瞭特徵檢測的準確性;利用聚類分析具有較好的魯棒性和適閤于大數據量分析的特點,對心電信號進行波形分類。採用MIT-BIH標準心電數據庫中的部分數據對識彆結果進行判斷,改進後的K-means聚類算法的準確率高于傳統的K-means聚類算法,實驗錶明該算法對心電信號可以進行有效分類。
침대심전도자동진단곤난저일문제,제출료일충신적취류산법:기우균방차속성가권적유전모의퇴화K-means개진취류산법,용우개진심전도(ECG)신호적자동식별기술。이용소파변환적다분변솔화항간우능력호적특점,검측QRS파、P파、T파,제고료특정검측적준학성;이용취류분석구유교호적로봉성화괄합우대수거량분석적특점,대심전신호진행파형분류。채용MIT-BIH표준심전수거고중적부분수거대식별결과진행판단,개진후적K-means취류산법적준학솔고우전통적K-means취류산법,실험표명해산법대심전신호가이진행유효분류。
In view of the difficulties to recognize ECG signal automatically,this paper presented a new clustering algorithm, which was proposed based on the MSE attribute weights genetic simulated annealing to improve K-means clustering algorithm , in order to improve the ECG signal automatic identification technology.It used wavelet transform and multi-resolution and good anti-jamming capability to detect QRS complex,P wave,T wave,improved the accuracy of feature detection.Because of the cluster method had more robust and suitable for large data volume analysis,it classified the ECG signals by using this method to analyze large data volume.It adopted the parts of data from the MIT-BIH standard ECG database to judge the result of the i-dentification.The improved K-means clustering algorithm is more accurate than the traditional K-means clustering algorithm, experiments indicate that this algorithm is effective and accurate to classify ECG signals.