北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
10期
1341-1347
,共7页
颗粒增强复合材料%金刚石%陶瓷%表面镀膜%热导率%放电等离子烧结
顆粒增彊複閤材料%金剛石%陶瓷%錶麵鍍膜%熱導率%放電等離子燒結
과립증강복합재료%금강석%도자%표면도막%열도솔%방전등리자소결
particle reinforced composites%diamond%ceramics%surface coating%thermal conductivity%spark plasma sintering
为满足现代电子工业日益增长的散热需求,急需研究和开发新型高导热陶瓷(玻璃)基复合材料,而改善复合材料中增强相与基体的界面结合状况是提高复合材料热导率的重要途径.本文在对金刚石和镀Cr金刚石进行镀Cu和控制氧化的基础上,利用放电等离子烧结方法制备了不同的金刚石增强玻璃基复合材料,并观察了其微观形貌和界面结合状况,测定了复合材料的热导率.实验结果表明:复合材料中金刚石颗粒均匀分布于玻璃基体中,Cu/金刚石界面和Cr/Cu界面分别是两种复合材料中结合最弱的界面;复合材料的热导率随着金刚石体积分数的增加而增加;金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而降低,由于镀Cr层实现了与金刚石的化学结合以及Cr在Cu层中的扩散,镀Cr金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而增加.当金刚石粒径为100μm、体积分数为70%及镀Cu层厚度为约1.59μm时,复合材料的热导率最高达到约91.0 W·m-1·K-1.
為滿足現代電子工業日益增長的散熱需求,急需研究和開髮新型高導熱陶瓷(玻璃)基複閤材料,而改善複閤材料中增彊相與基體的界麵結閤狀況是提高複閤材料熱導率的重要途徑.本文在對金剛石和鍍Cr金剛石進行鍍Cu和控製氧化的基礎上,利用放電等離子燒結方法製備瞭不同的金剛石增彊玻璃基複閤材料,併觀察瞭其微觀形貌和界麵結閤狀況,測定瞭複閤材料的熱導率.實驗結果錶明:複閤材料中金剛石顆粒均勻分佈于玻璃基體中,Cu/金剛石界麵和Cr/Cu界麵分彆是兩種複閤材料中結閤最弱的界麵;複閤材料的熱導率隨著金剛石體積分數的增加而增加;金剛石/玻璃複閤材料的熱導率隨著鍍Cu層厚度的增加而降低,由于鍍Cr層實現瞭與金剛石的化學結閤以及Cr在Cu層中的擴散,鍍Cr金剛石/玻璃複閤材料的熱導率隨著鍍Cu層厚度的增加而增加.噹金剛石粒徑為100μm、體積分數為70%及鍍Cu層厚度為約1.59μm時,複閤材料的熱導率最高達到約91.0 W·m-1·K-1.
위만족현대전자공업일익증장적산열수구,급수연구화개발신형고도열도자(파리)기복합재료,이개선복합재료중증강상여기체적계면결합상황시제고복합재료열도솔적중요도경.본문재대금강석화도Cr금강석진행도Cu화공제양화적기출상,이용방전등리자소결방법제비료불동적금강석증강파리기복합재료,병관찰료기미관형모화계면결합상황,측정료복합재료적열도솔.실험결과표명:복합재료중금강석과립균균분포우파리기체중,Cu/금강석계면화Cr/Cu계면분별시량충복합재료중결합최약적계면;복합재료적열도솔수착금강석체적분수적증가이증가;금강석/파리복합재료적열도솔수착도Cu층후도적증가이강저,유우도Cr층실현료여금강석적화학결합이급Cr재Cu층중적확산,도Cr금강석/파리복합재료적열도솔수착도Cu층후도적증가이증가.당금강석립경위100μm、체적분수위70%급도Cu층후도위약1.59μm시,복합재료적열도솔최고체도약91.0 W·m-1·K-1.
It is emergent to study and develop new ceramic (glass) matrix composites with high thermal conductivity. Improving the bonding condition of the interface between the matrix and reinforcement is an important way to increase the thermal conductivity of these composites. Based on copper plating and controlled oxidation of diamond particles and Cr-coated diamond particles, diamond reinforced glass matrix composites were successfully synthesized by spark plasma sintering (SPS). Their micro-morphology, interface bonding condition and thermal conductivity were investigated. It is shown that diamond particles are distributed in the glass matrix uniformly, while the Cu/ diamond interface and Cr/ Cu interface are the weakest bonding interface in the two types of composites, respectively. The thermal conductivity of these composites increases with increasing diamond content. The thermal conductivity of the diamond/ glass composites decreases with increasing Cu coating thickness; because of chemical bonding between Cr and diamond particles and Cr diffusion in Cu coatings, the thermal conductivity of the Cr-coated diamond/ glass composites increases with increasing Cu coating thickness. When the diamond particle size is 100 μm, the diamond volume fraction is 70% and the Cu coating thickness is 1. 59 μm, the Cr-coated diamond/ glass composite has the highest thermal conductivity about 91. 0 W·m-1·K-1 .