计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
21期
125-128
,共4页
聚类分析%多子群粒子群%全局优化%K-means%PSOK-means
聚類分析%多子群粒子群%全跼優化%K-means%PSOK-means
취류분석%다자군입자군%전국우화%K-means%PSOK-means
clustering analysis%multi-subswarms particle swarm%global optimization%K-means%PSOK-means
粒子群(PSO)与K-means结合是聚类分析中的重要方法之一,但都未考虑粒子更新导致的空类问题。提出基于多子群粒子群伪均值(PK-means)聚类算法,为该问题的解决提供一种有效途径,并与粒子群K均值(PSOK-means), K-means算法进行比较。理论分析和实验表明,该算法不但可以防止空类出现,而且同时还具有非常好的全局收敛性和局部寻优能力,并且在孤立点问题的处理上也具有很好的效果。
粒子群(PSO)與K-means結閤是聚類分析中的重要方法之一,但都未攷慮粒子更新導緻的空類問題。提齣基于多子群粒子群偽均值(PK-means)聚類算法,為該問題的解決提供一種有效途徑,併與粒子群K均值(PSOK-means), K-means算法進行比較。理論分析和實驗錶明,該算法不但可以防止空類齣現,而且同時還具有非常好的全跼收斂性和跼部尋優能力,併且在孤立點問題的處理上也具有很好的效果。
입자군(PSO)여K-means결합시취류분석중적중요방법지일,단도미고필입자경신도치적공류문제。제출기우다자군입자군위균치(PK-means)취류산법,위해문제적해결제공일충유효도경,병여입자군K균치(PSOK-means), K-means산법진행비교。이론분석화실험표명,해산법불단가이방지공류출현,이차동시환구유비상호적전국수렴성화국부심우능력,병차재고립점문제적처리상야구유흔호적효과。
Combining particle swarm with K-means algorithm is one of the important methods in data mining, but all methods almost ignore the empty class problem which the particle update causes. This paper proposes a PK-means clustering algo-rithm based on multi-subswarms particle swarm and pseudo means, then is compared with both PSOK-means and K-means. The theory analysis and experiments show that the algorithm not only avoids empty clustering class but also has well global convergence and the local optimization, overcomes local minimum better, has a great effect on isolated data.