火控雷达技术
火控雷達技術
화공뢰체기술
FIRE CONTROL RADAR TECHNOLOGY
2014年
3期
63-70
,共8页
无线传感器网络%机动目标跟踪%网络共识%信息滤波器%交互式多模型滤波器%变拓扑%非完全连通网络
無線傳感器網絡%機動目標跟蹤%網絡共識%信息濾波器%交互式多模型濾波器%變拓撲%非完全連通網絡
무선전감기망락%궤동목표근종%망락공식%신식려파기%교호식다모형려파기%변탁복%비완전련통망락
wireless sensors network%maneuvering target tracking%network consensus%information filter%interac-ting multiple model filter%variable topology%NOT-fully-connected network
完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器( Consensus based Multiple Model Information Filter, C-MMIF)。 C-MMIF基于标准IMM框架,保证了估计最优性;并通过构造目标运动模式概率和状态估计的信息滤波形式,使节点间运算相互独立。同时,每个独立节点仅需与其相邻节点通讯,利用平均网络共识分布式优化算法对自身信息状态进行更新,实现节点间对目标运动模式及状态的一致估计。最后在无人机与地面传感器网络协同对地机动目标跟踪场景下进行算法仿真验证,结果证明该方法可以在无融合处理中心且网络拓扑变化情况下,使各节点实现对机动目标的一致有效跟踪。
完全分佈式的機動目標跟蹤是傳感器網絡等應用中亟待解決的關鍵問題。本文針對變拓撲非完全連通網絡,提齣一種基于網絡共識的多模型信息濾波器( Consensus based Multiple Model Information Filter, C-MMIF)。 C-MMIF基于標準IMM框架,保證瞭估計最優性;併通過構造目標運動模式概率和狀態估計的信息濾波形式,使節點間運算相互獨立。同時,每箇獨立節點僅需與其相鄰節點通訊,利用平均網絡共識分佈式優化算法對自身信息狀態進行更新,實現節點間對目標運動模式及狀態的一緻估計。最後在無人機與地麵傳感器網絡協同對地機動目標跟蹤場景下進行算法倣真驗證,結果證明該方法可以在無融閤處理中心且網絡拓撲變化情況下,使各節點實現對機動目標的一緻有效跟蹤。
완전분포식적궤동목표근종시전감기망락등응용중극대해결적관건문제。본문침대변탁복비완전련통망락,제출일충기우망락공식적다모형신식려파기( Consensus based Multiple Model Information Filter, C-MMIF)。 C-MMIF기우표준IMM광가,보증료고계최우성;병통과구조목표운동모식개솔화상태고계적신식려파형식,사절점간운산상호독립。동시,매개독립절점부수여기상린절점통신,이용평균망락공식분포식우화산법대자신신식상태진행경신,실현절점간대목표운동모식급상태적일치고계。최후재무인궤여지면전감기망락협동대지궤동목표근종장경하진행산법방진험증,결과증명해방법가이재무융합처리중심차망락탁복변화정황하,사각절점실현대궤동목표적일치유효근종。
To track a maneuvering target in a fully distributed way is an emerging and critical task in important sen-sor network applications. A consensus based multiple model information filter ( C-MMIF) is presented for not-fully-connected sensor networks with variable topology. The C-MMIF follows standard interacting multiple model ( IMM) filter framework which ensures the optimality of the estimation. Through applying information filtering for-mation on target’ s motion model probability and state estimation, parallel calculation among sensors are achieved. Meanwhile, with the average consensus distributed optimization algorithm, each sensor only needs to communicate with its adjacent nodes and update its own information states to achieve the global consensus on estimation of motion model probability and system states. Simulation test of cooperative target tracking using an unmanned air vehicle ( UAV) and ground sensor network are conducted. The results validate that, in a sensor networks with variable to-pologies and without fusion processing center, the C -MMIF can make every node effectively track maneuvering target.