东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2014年
3期
358-362
,共5页
置信区间预测%行程时间%ARIMA-GARCH%条件方差%可靠性
置信區間預測%行程時間%ARIMA-GARCH%條件方差%可靠性
치신구간예측%행정시간%ARIMA-GARCH%조건방차%가고성
confidence interval forecasting travel time autoregressive integrated%moving average and generalized autoregressive conditional%heteroskedasticity%ARIMA-GARCH conditional%variance reliability
为了提高行程时间预测的可靠性,构建了自回归综合移动平均与广义自回归条件异方差性( ARIMA-GARCH)模型进行城市主干道行程时间动态置信区间预测,其中ARIMA模型作为GARCH模型的均值方程用于捕获行程时间均值,GARCH模型用于捕获行程时间条件方差。运用昆山市交通监测系统中采集的实际交通流数据进行验证和评估。结果表明,相较于传统的ARIMA模型,提出的方法虽然不能显著提升行程时间均值的预测性能,但是在行程时间波动性预测方面具有较大的优势。该方法可捕获行程时间异方差,从而能够预测出比ARIMA模型预测的固定置信区间更能反映行程时间观测值波动性的动态置信区间。
為瞭提高行程時間預測的可靠性,構建瞭自迴歸綜閤移動平均與廣義自迴歸條件異方差性( ARIMA-GARCH)模型進行城市主榦道行程時間動態置信區間預測,其中ARIMA模型作為GARCH模型的均值方程用于捕穫行程時間均值,GARCH模型用于捕穫行程時間條件方差。運用昆山市交通鑑測繫統中採集的實際交通流數據進行驗證和評估。結果錶明,相較于傳統的ARIMA模型,提齣的方法雖然不能顯著提升行程時間均值的預測性能,但是在行程時間波動性預測方麵具有較大的優勢。該方法可捕穫行程時間異方差,從而能夠預測齣比ARIMA模型預測的固定置信區間更能反映行程時間觀測值波動性的動態置信區間。
위료제고행정시간예측적가고성,구건료자회귀종합이동평균여엄의자회귀조건이방차성( ARIMA-GARCH)모형진행성시주간도행정시간동태치신구간예측,기중ARIMA모형작위GARCH모형적균치방정용우포획행정시간균치,GARCH모형용우포획행정시간조건방차。운용곤산시교통감측계통중채집적실제교통류수거진행험증화평고。결과표명,상교우전통적ARIMA모형,제출적방법수연불능현저제승행정시간균치적예측성능,단시재행정시간파동성예측방면구유교대적우세。해방법가포획행정시간이방차,종이능구예측출비ARIMA모형예측적고정치신구간경능반영행정시간관측치파동성적동태치신구간。
To improve the forecasting reliability of travel time the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity ARIMA-GARCH model.In which the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time.The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that compared with the conventional ARIMA model the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model.