东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2014年
3期
306-310
,共5页
李元金%舒华忠%罗立民%陈阳%王涛%岳座刚
李元金%舒華忠%囉立民%陳暘%王濤%嶽座剛
리원금%서화충%라립민%진양%왕도%악좌강
XRII图像%Delaunay三角插值%扭曲校正%C臂X机
XRII圖像%Delaunay三角插值%扭麯校正%C臂X機
XRII도상%Delaunay삼각삽치%뉴곡교정%C비X궤
XRII image%Delaunay%triangulation interpolation%distortion correction
针对扭曲的影像加强器( X-ray image intensifier, XRII)图像对后继工作产生不利影响的问题,提出使用Delaunay三角网插值对扭曲的XRII图像进行校正.首先分析了XRII图像扭曲的原因、经典的校正方法和Delaunay三角网插值;然后,使用程序流程图对算法过程进行了解释.最后,通过实验来证明所提算法的有效性和可行性.实验结果表明:在中心对齐时,使用Delaunay三角插值方法校正后的XRII图像网格线交叉点坐标值与理想校正靶网格线交叉点坐标值的残留误差和标准误差分别为5.7604×10-14和5.3542×10-14,使用经典的全局四次多项式、模型L1和模型L2校正之后残留误差和标准误差分别为1.7903,2.3888,2.3388和1.2620,1.2681,1.2026;在中心不对齐时,使用Delaunay三角插值方法校正后的XRII图像网格线交叉点坐标值与理想校正靶网格线交叉点坐标值的残留误差和标准误差分别为2.489×10-13和2.4498×10-13,使用经典的全局四次多项式、模型L1和模型L2校正后残留误差和标准误差分别为1.7703,2.3888,2.3388和1.2699,1.2681,1.2026.
針對扭麯的影像加彊器( X-ray image intensifier, XRII)圖像對後繼工作產生不利影響的問題,提齣使用Delaunay三角網插值對扭麯的XRII圖像進行校正.首先分析瞭XRII圖像扭麯的原因、經典的校正方法和Delaunay三角網插值;然後,使用程序流程圖對算法過程進行瞭解釋.最後,通過實驗來證明所提算法的有效性和可行性.實驗結果錶明:在中心對齊時,使用Delaunay三角插值方法校正後的XRII圖像網格線交扠點坐標值與理想校正靶網格線交扠點坐標值的殘留誤差和標準誤差分彆為5.7604×10-14和5.3542×10-14,使用經典的全跼四次多項式、模型L1和模型L2校正之後殘留誤差和標準誤差分彆為1.7903,2.3888,2.3388和1.2620,1.2681,1.2026;在中心不對齊時,使用Delaunay三角插值方法校正後的XRII圖像網格線交扠點坐標值與理想校正靶網格線交扠點坐標值的殘留誤差和標準誤差分彆為2.489×10-13和2.4498×10-13,使用經典的全跼四次多項式、模型L1和模型L2校正後殘留誤差和標準誤差分彆為1.7703,2.3888,2.3388和1.2699,1.2681,1.2026.
침대뉴곡적영상가강기( X-ray image intensifier, XRII)도상대후계공작산생불리영향적문제,제출사용Delaunay삼각망삽치대뉴곡적XRII도상진행교정.수선분석료XRII도상뉴곡적원인、경전적교정방법화Delaunay삼각망삽치;연후,사용정서류정도대산법과정진행료해석.최후,통과실험래증명소제산법적유효성화가행성.실험결과표명:재중심대제시,사용Delaunay삼각삽치방법교정후적XRII도상망격선교차점좌표치여이상교정파망격선교차점좌표치적잔류오차화표준오차분별위5.7604×10-14화5.3542×10-14,사용경전적전국사차다항식、모형L1화모형L2교정지후잔류오차화표준오차분별위1.7903,2.3888,2.3388화1.2620,1.2681,1.2026;재중심불대제시,사용Delaunay삼각삽치방법교정후적XRII도상망격선교차점좌표치여이상교정파망격선교차점좌표치적잔류오차화표준오차분별위2.489×10-13화2.4498×10-13,사용경전적전국사차다항식、모형L1화모형L2교정후잔류오차화표준오차분별위1.7703,2.3888,2.3388화1.2699,1.2681,1.2026.
To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.