东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2014年
3期
267-270
,共4页
谢家烨%周后型%牟星%华光%李卫东%洪伟
謝傢燁%週後型%牟星%華光%李衛東%洪偉
사가엽%주후형%모성%화광%리위동%홍위
实系数%复系数%预修正快速傅立叶变换算法%拟合格林函数快速傅立叶变换算法
實繫數%複繫數%預脩正快速傅立葉變換算法%擬閤格林函數快速傅立葉變換算法
실계수%복계수%예수정쾌속부립협변환산법%의합격림함수쾌속부립협변환산법
real coefficients complex coefficients pre-corrected fast Fourier transform%P-FFT fitting the%Green function fast%Fourier transform%FG-FFT
为了减少预修正快速傅立叶变换算法( P-FFT)或拟合格林函数快速傅立叶变换算法( FG-FFT)的稀疏系数矩阵所需的存储空间,通过改进系数方程的求解方法,获得实系数解。并将改进的求解方法与P-FFT和FG-FF相结合用于计算电场积分方程。所提方案将P-FFT/FG-FFT的稀疏系数矩阵的存储量降到自适应积分方法( AIM)/积分方程快速傅立叶变换算法( IE-FFT)相同水平的同时,未增加矩阵向量积所需FFT的次数,并保持原有算法的精度水平。此外,在每次迭代的时间耗费方面,新方案与AIM/IE-FFT相当。数值实验证实了新方案的上述优点。
為瞭減少預脩正快速傅立葉變換算法( P-FFT)或擬閤格林函數快速傅立葉變換算法( FG-FFT)的稀疏繫數矩陣所需的存儲空間,通過改進繫數方程的求解方法,穫得實繫數解。併將改進的求解方法與P-FFT和FG-FF相結閤用于計算電場積分方程。所提方案將P-FFT/FG-FFT的稀疏繫數矩陣的存儲量降到自適應積分方法( AIM)/積分方程快速傅立葉變換算法( IE-FFT)相同水平的同時,未增加矩陣嚮量積所需FFT的次數,併保持原有算法的精度水平。此外,在每次迭代的時間耗費方麵,新方案與AIM/IE-FFT相噹。數值實驗證實瞭新方案的上述優點。
위료감소예수정쾌속부립협변환산법( P-FFT)혹의합격림함수쾌속부립협변환산법( FG-FFT)적희소계수구진소수적존저공간,통과개진계수방정적구해방법,획득실계수해。병장개진적구해방법여P-FFT화FG-FF상결합용우계산전장적분방정。소제방안장P-FFT/FG-FFT적희소계수구진적존저량강도자괄응적분방법( AIM)/적분방정쾌속부립협변환산법( IE-FFT)상동수평적동시,미증가구진향량적소수FFT적차수,병보지원유산법적정도수평。차외,재매차질대적시간모비방면,신방안여AIM/IE-FFT상당。수치실험증실료신방안적상술우점。
In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform P-FFT or fitting the Green function fast Fourier transform FG-FFT the real coefficients are solved by improving the solution method of the coefficient equations. The novel method in both P-FFT and FG-FFT for the electric field integral equation EFIE is employed.With the proposed method the storage amount for the sparse coefficient matrix can be reduced to the same level as that in the adaptive integral method AIM or the integral equation fast Fourier transform IE-FFT .Meanwhile the new algorithms do not increase the number of the FFTs used in a matrix-vector product and maintain almost the same level of accuracy as the original versions.Besides in respect of the time cost in each iteration the new algorithms have also the same level as AIM or IE-FFT .The numerical examples demonstrate the advantages of the proposed method.