天津城建大学学报
天津城建大學學報
천진성건대학학보
Journal of Tianjin CHENGJIAN University
2014年
3期
225-228
,共4页
L-fuzzy拓扑空间%α-远域族%可数强F紧性%γ-复盖%L-好的推广%α-ω聚点
L-fuzzy拓撲空間%α-遠域族%可數彊F緊性%γ-複蓋%L-好的推廣%α-ω聚點
L-fuzzy탁복공간%α-원역족%가수강F긴성%γ-복개%L-호적추엄%α-ω취점
L-fuzzy topological space%α-remote neighborhood%countable strong F compactness%γ-cove%L-good extension%α-ω accumulation point
利用α-远域族的工具,在L-fuzzy 拓扑空间中引进可数强F紧性,研究了可数强F紧性的刻划问题。证明了可数强F紧性是“L-好的推广”、对闭子集遗传以及是F完备映射的逆不变量,同时,系统地研究了可数强F紧性的一些特征性质。
利用α-遠域族的工具,在L-fuzzy 拓撲空間中引進可數彊F緊性,研究瞭可數彊F緊性的刻劃問題。證明瞭可數彊F緊性是“L-好的推廣”、對閉子集遺傳以及是F完備映射的逆不變量,同時,繫統地研究瞭可數彊F緊性的一些特徵性質。
이용α-원역족적공구,재L-fuzzy 탁복공간중인진가수강F긴성,연구료가수강F긴성적각화문제。증명료가수강F긴성시“L-호적추엄”、대폐자집유전이급시F완비영사적역불변량,동시,계통지연구료가수강F긴성적일사특정성질。
This paper utilizesα-remote neighborhood family of tools,introduces countable strong F compactness inL-fuzzy topological space,and researches the characterizations of countable strong F compactness. It is proved that countable strong F compactness is the “L-good extension”,hereditary with closed subsets and is an inverse invariant ofL-fuzzy perfect map-pings. Meanwhile,the author systematically studies some characteristic properties of countable strong F compactness.