中国舰船研究
中國艦船研究
중국함선연구
CHINESE JOURNAL OF SHIP RESEARCH
2014年
5期
53-59
,共7页
调距桨%强度%压力系数%水动力载荷%有限元法
調距槳%彊度%壓力繫數%水動力載荷%有限元法
조거장%강도%압력계수%수동력재하%유한원법
controllable pitch propeller%strength%pressure coefficient%hydrodynamic loads%finite ele-ment method
针对复杂的螺旋桨几何外形和载荷分布,为解决其强度校核问题,首先,采用单向流固耦合CFD方法和有限元方法对螺旋桨的结构强度进行计算分析,通过与文献推荐的安全系数进行比较,验证了该方法的合理性;然后,采用此方法对设计的调距桨在设计工况和系柱工况进行强度校核,同时与校核规范进行比较。结果表明,和现有的强度校核规范相比,此方法能提供更多的调距桨结构强度信息。该方法是先求解RANS方程来获取桨模表面的水动力压力系数,然后划分实桨的有限元模型,再把压力系数插值到有限元网格节点上计算得到实桨表面的水动力载荷,同时施加离心力,求解得到最大等效应力和应变,从而计算得到安全系数,可为调距桨的强度研究提供一种数值计算手段。
針對複雜的螺鏇槳幾何外形和載荷分佈,為解決其彊度校覈問題,首先,採用單嚮流固耦閤CFD方法和有限元方法對螺鏇槳的結構彊度進行計算分析,通過與文獻推薦的安全繫數進行比較,驗證瞭該方法的閤理性;然後,採用此方法對設計的調距槳在設計工況和繫柱工況進行彊度校覈,同時與校覈規範進行比較。結果錶明,和現有的彊度校覈規範相比,此方法能提供更多的調距槳結構彊度信息。該方法是先求解RANS方程來穫取槳模錶麵的水動力壓力繫數,然後劃分實槳的有限元模型,再把壓力繫數插值到有限元網格節點上計算得到實槳錶麵的水動力載荷,同時施加離心力,求解得到最大等效應力和應變,從而計算得到安全繫數,可為調距槳的彊度研究提供一種數值計算手段。
침대복잡적라선장궤하외형화재하분포,위해결기강도교핵문제,수선,채용단향류고우합CFD방법화유한원방법대라선장적결구강도진행계산분석,통과여문헌추천적안전계수진행비교,험증료해방법적합이성;연후,채용차방법대설계적조거장재설계공황화계주공황진행강도교핵,동시여교핵규범진행비교。결과표명,화현유적강도교핵규범상비,차방법능제공경다적조거장결구강도신식。해방법시선구해RANS방정래획취장모표면적수동력압력계수,연후화분실장적유한원모형,재파압력계수삽치도유한원망격절점상계산득도실장표면적수동력재하,동시시가리심력,구해득도최대등효응력화응변,종이계산득도안전계수,가위조거장적강도연구제공일충수치계산수단。
Considering the complex geometry shape and load distribution of a propeller, this paper investi-gates the accurate solution to their strength checking problems. First, the CFD method of unidirectional flu-id-structure coupling and the finite element method are used to calculate and analyze the structural strength of propeller; next, by comparing with the document-recommended safety factor, the rationality of the method is verified; then, the proposed method is used to check the structural strength of the designed controllable pitch propeller on the bollard and design conditions, concurrently comparing with the specifica-tion check. Results show that this method, compared with the existing strength check specification, has the advantage of providing more information on the structural strength. Specifically, the method is done by first solving the RANS equation and obtaining the hydrodynamic pressure coefficient of the propeller model sur-face, then dividing the finite element model of the real propeller, and finally interpolating the pressure coef-ficient to the finite element mesh node and calculating the hydrodynamic loads of the real propeller surface, simultaneously exerting centrifugal force, and solving the maximum equivalent stress and distortion, as well as calculating the safety factor. The method is designed to the strength research of controllable pitch propel-ler to provide a means of numerical calculation.