林产化学与工业
林產化學與工業
림산화학여공업
CHEMISTRY AND INDUSTRY OF FOREST PRODUCTS
2014年
5期
27-34
,共8页
刘斌%顾洁%邱盼%陆裕聪%周建斌
劉斌%顧潔%邱盼%陸裕聰%週建斌
류빈%고길%구반%륙유총%주건빈
稻壳%活性炭%品红%吸附动力学%等温吸附
稻殼%活性炭%品紅%吸附動力學%等溫吸附
도각%활성탄%품홍%흡부동역학%등온흡부
rice husk%activated carbon%fuchsine%adsorption kinetics%adsorption isotherm
以稻壳为原料,同时制备脱硅稻壳,采用ZnCl2-CuCl2复合活化剂制备活性炭,并对所制备的稻壳活性炭( RAC)与脱硅稻壳活性炭( FAC)的孔结构和表面化学性质进行了分析,而后将其应用于对水中有机物的去除,同时研究了其吸附特性。结果表明:所制得的稻壳活性炭比表面积达到了1924 m2/g,而稻壳经过脱硅处理制得的活性炭比表面积达到了2433 m2/g。脱硅稻壳表面具有更多种类的官能团存在。稻壳与脱硅稻壳活性炭在碱性条件下有利于品红的吸附,并且适用于高盐度条件下品红的吸附;在初始pH值为7,初始质量浓度为400 mg/L,投加量为0.8 mg/g时,稻壳活性炭和脱硅稻壳活性炭对有机物的吸附量分别达到439和483 mg/g;吸附等温模型符合Langmuir等温式;吸附动力学以及脱附研究显示稻壳与脱硅稻壳活性炭对品红的吸附过程主要由化学吸附控制。
以稻殼為原料,同時製備脫硅稻殼,採用ZnCl2-CuCl2複閤活化劑製備活性炭,併對所製備的稻殼活性炭( RAC)與脫硅稻殼活性炭( FAC)的孔結構和錶麵化學性質進行瞭分析,而後將其應用于對水中有機物的去除,同時研究瞭其吸附特性。結果錶明:所製得的稻殼活性炭比錶麵積達到瞭1924 m2/g,而稻殼經過脫硅處理製得的活性炭比錶麵積達到瞭2433 m2/g。脫硅稻殼錶麵具有更多種類的官能糰存在。稻殼與脫硅稻殼活性炭在堿性條件下有利于品紅的吸附,併且適用于高鹽度條件下品紅的吸附;在初始pH值為7,初始質量濃度為400 mg/L,投加量為0.8 mg/g時,稻殼活性炭和脫硅稻殼活性炭對有機物的吸附量分彆達到439和483 mg/g;吸附等溫模型符閤Langmuir等溫式;吸附動力學以及脫附研究顯示稻殼與脫硅稻殼活性炭對品紅的吸附過程主要由化學吸附控製。
이도각위원료,동시제비탈규도각,채용ZnCl2-CuCl2복합활화제제비활성탄,병대소제비적도각활성탄( RAC)여탈규도각활성탄( FAC)적공결구화표면화학성질진행료분석,이후장기응용우대수중유궤물적거제,동시연구료기흡부특성。결과표명:소제득적도각활성탄비표면적체도료1924 m2/g,이도각경과탈규처리제득적활성탄비표면적체도료2433 m2/g。탈규도각표면구유경다충류적관능단존재。도각여탈규도각활성탄재감성조건하유리우품홍적흡부,병차괄용우고염도조건하품홍적흡부;재초시pH치위7,초시질량농도위400 mg/L,투가량위0.8 mg/g시,도각활성탄화탈규도각활성탄대유궤물적흡부량분별체도439화483 mg/g;흡부등온모형부합Langmuir등온식;흡부동역학이급탈부연구현시도각여탈규도각활성탄대품홍적흡부과정주요유화학흡부공제。
The activated carbons were prepared from rice husks and silicon-freed rice husks by composite activator. The difference between rice husk-based activated carbon ( RAC) and silicon-freed rice husk based activated carbon ( FAC) in pore structure and surface chemistry were analyzed. The synthesized activated carbon was used as adsorbents in water treatment. The adsorption properties, isotherms and kinetics of fuchsine on activated carbons were investigated. The results indicated that the BET surface area of RAC and FAC reached 1 924 and 2 433 m2/g, respectively. There FAC has more functional groups compared with RAC. RAC and FAC could improve the removal efficiency of fuchsine at high pH value. The adsorbents could be used in high salt concentration conditions. When the initial pH 7, initial mass concentration 400 mg/L and the adsorbents dosages 0. 8 mg/g were used, the adsorption capacity of RAC and FAC was 439 and 483 mg/g, respectively. The Langmuir isotherm model was found to fit well with the adsorption process of RAC and FAC. Both the kinetics and desorption study indicated that the adsorption process was controlled by chemisorption.