空军工程大学学报(自然科学版)
空軍工程大學學報(自然科學版)
공군공정대학학보(자연과학판)
JOURNAL OF AIR FORCE ENGINEERING UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
5期
71-75
,共5页
目标追踪%多示例学习%压缩感知
目標追蹤%多示例學習%壓縮感知
목표추종%다시례학습%압축감지
visual tracking%multiple instance learning%compressive sensing
近年来提出的多示例学习算法在一定程度上能够克服模板漂移问题。然而,在线学习需要获取足够多的有用数据才能达到稳定的追踪效果,但是这却增加了算法的复杂度。为了解决这一问题,在压缩感知理论的基础上,运用随机观测的方法对多尺度图像特征进行降维,提取的这些低维特征中包含大量的有用信息。因此,我们提出的算法是先利用压缩感知理论提取目标特征之后,再使用在线多示例学习算法分类器对这些特征进行分类从而实现目标的稳定跟踪。通过对不同的图像序列进行实验,结果表明基于压缩感知的在线多示例学习算法对实时的目标追踪有很好的适应性。
近年來提齣的多示例學習算法在一定程度上能夠剋服模闆漂移問題。然而,在線學習需要穫取足夠多的有用數據纔能達到穩定的追蹤效果,但是這卻增加瞭算法的複雜度。為瞭解決這一問題,在壓縮感知理論的基礎上,運用隨機觀測的方法對多呎度圖像特徵進行降維,提取的這些低維特徵中包含大量的有用信息。因此,我們提齣的算法是先利用壓縮感知理論提取目標特徵之後,再使用在線多示例學習算法分類器對這些特徵進行分類從而實現目標的穩定跟蹤。通過對不同的圖像序列進行實驗,結果錶明基于壓縮感知的在線多示例學習算法對實時的目標追蹤有很好的適應性。
근년래제출적다시례학습산법재일정정도상능구극복모판표이문제。연이,재선학습수요획취족구다적유용수거재능체도은정적추종효과,단시저각증가료산법적복잡도。위료해결저일문제,재압축감지이론적기출상,운용수궤관측적방법대다척도도상특정진행강유,제취적저사저유특정중포함대량적유용신식。인차,아문제출적산법시선이용압축감지이론제취목표특정지후,재사용재선다시례학습산법분류기대저사특정진행분류종이실현목표적은정근종。통과대불동적도상서렬진행실험,결과표명기우압축감지적재선다시례학습산법대실시적목표추종유흔호적괄응성。
Visual tracking is one of the most popular research topics in the domain of computer vision.It is a challenging task to develop an effective and efficient tracking algorithm because of template drift prob-lems.To alleviate the drift,the multiple instance learning (MIL)method has been applied to target track-ing.However,there must be a sufficient amount of useful data for online MIL to learn at the outset, which actually increases the computational complexity.In this paper,an effective tracking algorithm is proposed which uses an online MIL based on the compressed appearance model to accomplish obj ect track-ing.In order to decrease the computational complexity and obtain sufficient data for online learning adap-tive appearance model,Features are extracted by non-adaptive random proj ections of the multi-scale image feature space based on compressive sensing theories.The experimental results on various videos show that the proposed method has a satisfactory performance in real-time obj ect tracking.