含能材料
含能材料
함능재료
ENERGETIC MATERIALS
2014年
5期
624-629
,共6页
朱左明%高鑫%王煊军%韩启龙
硃左明%高鑫%王煊軍%韓啟龍
주좌명%고흠%왕훤군%한계룡
军事化学与烟火技术%固体火箭发动机%水射流%清理工艺%多目标优化%非支配排序遗传算法(NSGA-Ⅱ)
軍事化學與煙火技術%固體火箭髮動機%水射流%清理工藝%多目標優化%非支配排序遺傳算法(NSGA-Ⅱ)
군사화학여연화기술%고체화전발동궤%수사류%청리공예%다목표우화%비지배배서유전산법(NSGA-Ⅱ)
military chemistry and pyrotechnics%solid rocket motor%waterjet%cleaning process%multi-objective optimization%non-dominated sorting genetic algorithm(NSGA-Ⅱ)
为兼顾固体火箭发动机水射流清理工艺的安全性、高效性、环保性,在水射流清理实验和废水收集实验的基础上,以清理作业中推进剂质量损失速率、废水产生速率为优化目标,以射流压力、靶距、喷嘴直径、单次清理时间为变量并加以约束条件,建立了固体火箭发动机水射流清理工艺的多目标优化方法。利用代理模型技术建立了推进剂质量损失速率的代理计算模型和废水产生速率的理论计算模型,使用非支配排序遗传算法( NSGA-Ⅱ)求得了 Pareto 优化解集。该优化解集可为不同情况下的水射流清理工艺设计中推进剂质量损失速率和废水产生速率的匹配提供多种方案。用推进剂质量损失速率和废水产生速率的最佳匹配,由HTPB 推进剂单位质量损失所造成的废水产生量仅为14.25 mL·g -1。
為兼顧固體火箭髮動機水射流清理工藝的安全性、高效性、環保性,在水射流清理實驗和廢水收集實驗的基礎上,以清理作業中推進劑質量損失速率、廢水產生速率為優化目標,以射流壓力、靶距、噴嘴直徑、單次清理時間為變量併加以約束條件,建立瞭固體火箭髮動機水射流清理工藝的多目標優化方法。利用代理模型技術建立瞭推進劑質量損失速率的代理計算模型和廢水產生速率的理論計算模型,使用非支配排序遺傳算法( NSGA-Ⅱ)求得瞭 Pareto 優化解集。該優化解集可為不同情況下的水射流清理工藝設計中推進劑質量損失速率和廢水產生速率的匹配提供多種方案。用推進劑質量損失速率和廢水產生速率的最佳匹配,由HTPB 推進劑單位質量損失所造成的廢水產生量僅為14.25 mL·g -1。
위겸고고체화전발동궤수사류청리공예적안전성、고효성、배보성,재수사류청리실험화폐수수집실험적기출상,이청리작업중추진제질량손실속솔、폐수산생속솔위우화목표,이사류압력、파거、분취직경、단차청리시간위변량병가이약속조건,건립료고체화전발동궤수사류청리공예적다목표우화방법。이용대리모형기술건립료추진제질량손실속솔적대리계산모형화폐수산생속솔적이론계산모형,사용비지배배서유전산법( NSGA-Ⅱ)구득료 Pareto 우화해집。해우화해집가위불동정황하적수사류청리공예설계중추진제질량손실속솔화폐수산생속솔적필배제공다충방안。용추진제질량손실속솔화폐수산생속솔적최가필배,유HTPB 추진제단위질량손실소조성적폐수산생량부위14.25 mL·g -1。
To achieve a balance among safety,efficiency and environment-friendliness of waterjet cleaning process of solid rocket motor,on the basis of waterjet cleaning experiments and wastewater collection experiments,a multi-objective optimization meth-od for waterjet cleaning process of solid rocket motor was established with propellant massloss rate and wastewater generation rate as the optimization objectives,and waterjet pressure,target distance,nozzle diameter and single cleaning time as the variables with constrained conditions. The calculation models of propellant massloss rate and wastewater generation rate were established with agent modeling technology,and Pareto optimal solution set was obtained by the non-dominated sorting genetic algorithm (NSGA-Ⅱ). Results show that the optimal solution set can offer a variety of programs for the matching between propellant mass-loss rate and wastewater generation rate in waterjet cleaning process design under different conditions. With the best matching between them,the wastewater production caused by HTPB propellant′s unit massloss is only 14. 25 mL·g -1 .