含能材料
含能材料
함능재료
ENERGETIC MATERIALS
2014年
5期
617-623
,共7页
传热学%火灾环境%含炸药结构%热响应数值模拟%热点火延滞时间
傳熱學%火災環境%含炸藥結構%熱響應數值模擬%熱點火延滯時間
전열학%화재배경%함작약결구%열향응수치모의%열점화연체시간
heat transfer%fire case%structure with explosive%numerical simulation of thermal response%thermal ignition delay time
为了解火灾环境下含炸药结构的热响应行为,针对其涉及的主要传热学问题,建立了池火灾火焰温升数值模型,碳/酚醛烧蚀层高温热解吸热数值模型,空气夹层复合传热数值模型,以及炸药受热分解放热数值模型。用所建数值模型,计算并获得了含炸药结构在不同温升条件下(恒定值1073 K、1273 K 及本研究所提的火焰实测温升曲线)、不同火焰辐射率(0.1~0.9)和不同空气夹层间壳体表面辐射率(0.1~0.9)下的温度响应和热点火延滞时间。结果表明:火烧30 min 情况下,火焰温度为1273 K 时,内部炸药在28.92 min 已经发生热点火现象。火焰温度为1073 K 和实测温升曲线时,内部炸药最高温度分别为448 K 和535 K。火焰辐射率从0.9降低到0.1时,内部炸药最高温度由535.4 K 降低到344.6 K,热点火延滞时间由1917 s 增加到3520 s。空气夹层间壳体表面辐射率由0.9降低到0.1时,内部炸药最高温度由535.4 K 降低到329.0 K,热点火延滞时间由1917 s 增加到3739 s。
為瞭解火災環境下含炸藥結構的熱響應行為,針對其涉及的主要傳熱學問題,建立瞭池火災火燄溫升數值模型,碳/酚醛燒蝕層高溫熱解吸熱數值模型,空氣夾層複閤傳熱數值模型,以及炸藥受熱分解放熱數值模型。用所建數值模型,計算併穫得瞭含炸藥結構在不同溫升條件下(恆定值1073 K、1273 K 及本研究所提的火燄實測溫升麯線)、不同火燄輻射率(0.1~0.9)和不同空氣夾層間殼體錶麵輻射率(0.1~0.9)下的溫度響應和熱點火延滯時間。結果錶明:火燒30 min 情況下,火燄溫度為1273 K 時,內部炸藥在28.92 min 已經髮生熱點火現象。火燄溫度為1073 K 和實測溫升麯線時,內部炸藥最高溫度分彆為448 K 和535 K。火燄輻射率從0.9降低到0.1時,內部炸藥最高溫度由535.4 K 降低到344.6 K,熱點火延滯時間由1917 s 增加到3520 s。空氣夾層間殼體錶麵輻射率由0.9降低到0.1時,內部炸藥最高溫度由535.4 K 降低到329.0 K,熱點火延滯時間由1917 s 增加到3739 s。
위료해화재배경하함작약결구적열향응행위,침대기섭급적주요전열학문제,건립료지화재화염온승수치모형,탄/분철소식층고온열해흡열수치모형,공기협층복합전열수치모형,이급작약수열분해방열수치모형。용소건수치모형,계산병획득료함작약결구재불동온승조건하(항정치1073 K、1273 K 급본연구소제적화염실측온승곡선)、불동화염복사솔(0.1~0.9)화불동공기협층간각체표면복사솔(0.1~0.9)하적온도향응화열점화연체시간。결과표명:화소30 min 정황하,화염온도위1273 K 시,내부작약재28.92 min 이경발생열점화현상。화염온도위1073 K 화실측온승곡선시,내부작약최고온도분별위448 K 화535 K。화염복사솔종0.9강저도0.1시,내부작약최고온도유535.4 K 강저도344.6 K,열점화연체시간유1917 s 증가도3520 s。공기협층간각체표면복사솔유0.9강저도0.1시,내부작약최고온도유535.4 K 강저도329.0 K,열점화연체시간유1917 s 증가도3739 s。
To understand the thermal response behavior of the structure with explosive under fire circumstance,in view of some related main heat transfer problems,the numerical models of pool fire′s temperature rise heat transfer,carbon /bakelite ablatant′s high temperature endothermic decomposition,inner air layer′s complex heat transfer and explosive′s exothermic decomposition were established. The thermal response and thermal ignition delay time for the structure with explosive under the conditions of different temperature(constant value 1073 K,1273 K,and measured temperature rise curve proposed in this work),different fire′s emissivity(0. 1-0. 9)and different surface emissivity for the shell with different air gap(0. 1-0. 9)were calculated and ob-tained using the established numerical models. Results show that the thermal ignition phenomenon of the inner explosive occurrs at 28. 92 min when the fire′s temperature is 1273 K in 30 min fire case. The highest temperature of inner explosive is 448 K and 535 K,respectively when the fire′s temperature is 1073 K and real temperature rise curve. The highest temperature of the explosive decreases from 535. 5 K to 344. 6 K and the thermal ignition delay time increases from 1917 s to 3520 s when the fire′s emissivity reduces from 0. 9 to 0. 1. The highest temperature of the explosive decreases from 535. 5 K to 329. 0 K and the thermal ignition delay time increases from 1917s to 3739s when the surface emissivity for the shell with air gap reduces from 0. 9 to 0. 1.