激光杂志
激光雜誌
격광잡지
LASER JOURNAL
2014年
10期
46-50,56
,共6页
行人检测%最小二乘支持向量机%相位一致性特征%梯度直方图特征
行人檢測%最小二乘支持嚮量機%相位一緻性特徵%梯度直方圖特徵
행인검측%최소이승지지향량궤%상위일치성특정%제도직방도특정
Pedestrian detection%LSSVM%Phase congruency feature%Histograms oriented gradients feautres
为了提高行人检测正确率,提出一种基于多特征融合和最小二乘支持向量机的行人检测模型。首先提取行人的相位一致性特征和梯度直方图特征,然后采用粒子群算法选择最优特征子集,最后将最优行人检测特征子集输入到最小二乘支持向量机对学习和分类,并采用对模型性能采用仿真实验进行测试。结果表明,相对于其它行人检测模型,本文模型不仅提高了行人检测率、降低了虚警率,而且加快行人检测效率,具有较强的鲁棒性。
為瞭提高行人檢測正確率,提齣一種基于多特徵融閤和最小二乘支持嚮量機的行人檢測模型。首先提取行人的相位一緻性特徵和梯度直方圖特徵,然後採用粒子群算法選擇最優特徵子集,最後將最優行人檢測特徵子集輸入到最小二乘支持嚮量機對學習和分類,併採用對模型性能採用倣真實驗進行測試。結果錶明,相對于其它行人檢測模型,本文模型不僅提高瞭行人檢測率、降低瞭虛警率,而且加快行人檢測效率,具有較彊的魯棒性。
위료제고행인검측정학솔,제출일충기우다특정융합화최소이승지지향량궤적행인검측모형。수선제취행인적상위일치성특정화제도직방도특정,연후채용입자군산법선택최우특정자집,최후장최우행인검측특정자집수입도최소이승지지향량궤대학습화분류,병채용대모형성능채용방진실험진행측시。결과표명,상대우기타행인검측모형,본문모형불부제고료행인검측솔、강저료허경솔,이차가쾌행인검측효솔,구유교강적로봉성。
In order to improve the pedestrian detection rate, a new pedestrian detection model based on multi-features and least squares support vector machine is proposed in this paper. Firstly, the Phase Congruency fea-ture and histograms of oriented gradients features are extracted, secondly, the optimal features are selected by parti-cle swarm optimization algorithm, finally, the features are input least squares support vector machine to train and classify, and the simulation experiments are carried out to test the performance of model. The results show that com-pared with other pedestrian detection model, the proposed model not only improve the pedestrian detection rate, but also can fasten the speed ,and it has good robust.