电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2014年
21期
39-46
,共8页
风电功率曲线%弃风%异常数据%四分位法%聚类分析
風電功率麯線%棄風%異常數據%四分位法%聚類分析
풍전공솔곡선%기풍%이상수거%사분위법%취류분석
wind power curve%wind curtailment%abnormal data%quartile method%cluster analysis
风电场的历史运行数据尤其是风速和风电功率数据对风电场的运行管理和电力系统的运行调度都具有重要意义。在实际运行中,风电场的弃风现象较为严重,弃风会导致风速-功率散点图中存在大量横向分布的堆积型异常数据,这会对构造风电场的等值功率曲线产生较大的影响,从而降低风电功率预测精度,进而对风电场的运行管理和电力系统的运行调度造成不利影响。文中在分析风电场弃风异常数据特征的基础上,提出一种基于四分位法和聚类分析的异常数据组合筛选模型,首先采用两次四分位法剔除常规的分散型异常数据,再使用聚类法剔除堆积型异常数据,并采用二次聚类的思想来解决k-means聚类中k 的取值问题。算例分析表明,该模型可有效剔除弃风造成的异常数据簇,对不同的风电机组和风电场有较强的通用性,具有一定的工程实用价值。
風電場的歷史運行數據尤其是風速和風電功率數據對風電場的運行管理和電力繫統的運行調度都具有重要意義。在實際運行中,風電場的棄風現象較為嚴重,棄風會導緻風速-功率散點圖中存在大量橫嚮分佈的堆積型異常數據,這會對構造風電場的等值功率麯線產生較大的影響,從而降低風電功率預測精度,進而對風電場的運行管理和電力繫統的運行調度造成不利影響。文中在分析風電場棄風異常數據特徵的基礎上,提齣一種基于四分位法和聚類分析的異常數據組閤篩選模型,首先採用兩次四分位法剔除常規的分散型異常數據,再使用聚類法剔除堆積型異常數據,併採用二次聚類的思想來解決k-means聚類中k 的取值問題。算例分析錶明,該模型可有效剔除棄風造成的異常數據簇,對不同的風電機組和風電場有較彊的通用性,具有一定的工程實用價值。
풍전장적역사운행수거우기시풍속화풍전공솔수거대풍전장적운행관리화전력계통적운행조도도구유중요의의。재실제운행중,풍전장적기풍현상교위엄중,기풍회도치풍속-공솔산점도중존재대량횡향분포적퇴적형이상수거,저회대구조풍전장적등치공솔곡선산생교대적영향,종이강저풍전공솔예측정도,진이대풍전장적운행관리화전력계통적운행조도조성불리영향。문중재분석풍전장기풍이상수거특정적기출상,제출일충기우사분위법화취류분석적이상수거조합사선모형,수선채용량차사분위법척제상규적분산형이상수거,재사용취류법척제퇴적형이상수거,병채용이차취류적사상래해결k-means취류중k 적취치문제。산례분석표명,해모형가유효척제기풍조성적이상수거족,대불동적풍전궤조화풍전장유교강적통용성,구유일정적공정실용개치。
The historical operating data collected from wind farms,especially wind and power data,is significantly important for operation and management of wind farms and scheduling of a power system.However,wind curtailments are severe in practical operations of wind farms,causing large amounts of stacked abnormal data clusters distributed horizontally in a wind-power scatter diagram.This kind of data leads to large errors in an equivalent power curve and inaccurate wind power prediction,affecting wind farm management and power system scheduling.According to the characteristics of abnormal data, this paper presents a combined model for eliminating abnormal data based on the quartile method and cluster analysis.The quartile method is used twice to eliminate scattered abnormal data and cluster analysis is then used to eliminate the stacked abnormal data.Moreover,the problem brought about by“k"value selection in k-means clustering is solved by a novel“re-cluster"method.A case study shows that the model presented is efficient for eliminating abnormal data clusters and can often be used for both wind turbines and wind farms for its practical advantages.