分析化学
分析化學
분석화학
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
2014年
11期
1568-1573
,共6页
张洋%张晓飞%白国花%方明%谭秋林%熊继军%孙东
張洋%張曉飛%白國花%方明%譚鞦林%熊繼軍%孫東
장양%장효비%백국화%방명%담추림%웅계군%손동
介电泳%微流控芯片%有限元仿真%细胞排列
介電泳%微流控芯片%有限元倣真%細胞排列
개전영%미류공심편%유한원방진%세포배렬
Dielectrophoresis%Microfluidic chip%Finite element simulation%Cell patterning
设计并制作了一种应用于细胞排列的介电泳微流控芯片,以实现细胞的非接触、批量排列。芯片主要包括PDMS微通道和“台阶”形ITO微电极。运用仿真软件COMSOL分析了微电极所形成的电场分布,确定了最大电场强度的位置;利用MEMS加工工艺制备了ITO微电极和PDMS微通道,PDMS微通道与带有ITO电极的载玻片经过氧等离子表面处理后,对准键合获得最终的微流控芯片。通过不同频率下的介电泳实验,实现了酵母菌细胞的介电泳运动,并确定了正、负介电泳运动的电场频率。结果表明,酵母菌细胞在溶液电导率为60μS/cm的环境下,1~10 kHz时,发生负介电泳运动;0.5~10 MHz时,发生正介电泳运动;50 kHz时,没有发生介电泳运动。并在施加8 Vp-p ,5 MHz交流电压信号的条件下,实现了酵母菌细胞沿“台阶”形电极边缘直线排列。
設計併製作瞭一種應用于細胞排列的介電泳微流控芯片,以實現細胞的非接觸、批量排列。芯片主要包括PDMS微通道和“檯階”形ITO微電極。運用倣真軟件COMSOL分析瞭微電極所形成的電場分佈,確定瞭最大電場彊度的位置;利用MEMS加工工藝製備瞭ITO微電極和PDMS微通道,PDMS微通道與帶有ITO電極的載玻片經過氧等離子錶麵處理後,對準鍵閤穫得最終的微流控芯片。通過不同頻率下的介電泳實驗,實現瞭酵母菌細胞的介電泳運動,併確定瞭正、負介電泳運動的電場頻率。結果錶明,酵母菌細胞在溶液電導率為60μS/cm的環境下,1~10 kHz時,髮生負介電泳運動;0.5~10 MHz時,髮生正介電泳運動;50 kHz時,沒有髮生介電泳運動。併在施加8 Vp-p ,5 MHz交流電壓信號的條件下,實現瞭酵母菌細胞沿“檯階”形電極邊緣直線排列。
설계병제작료일충응용우세포배렬적개전영미류공심편,이실현세포적비접촉、비량배렬。심편주요포괄PDMS미통도화“태계”형ITO미전겁。운용방진연건COMSOL분석료미전겁소형성적전장분포,학정료최대전장강도적위치;이용MEMS가공공예제비료ITO미전겁화PDMS미통도,PDMS미통도여대유ITO전겁적재파편경과양등리자표면처리후,대준건합획득최종적미류공심편。통과불동빈솔하적개전영실험,실현료효모균세포적개전영운동,병학정료정、부개전영운동적전장빈솔。결과표명,효모균세포재용액전도솔위60μS/cm적배경하,1~10 kHz시,발생부개전영운동;0.5~10 MHz시,발생정개전영운동;50 kHz시,몰유발생개전영운동。병재시가8 Vp-p ,5 MHz교류전압신호적조건하,실현료효모균세포연“태계”형전겁변연직선배렬。
Adielectrophoresis-basedmicrofluidicchipappliedtocellspatterningisdesignedandfabricated, and it demonstrates non-contact and batch manipulation of cells. The microfluidic chip employs a PDMS microchannel and two ITO electrodes, which are designed as a"step" shape. The distribution of electric field caused by the microelectrodes is simulated by finite element simulation software, COMSOL. The position of the maximum intensity of electric field is also determined. The ITO microelectrodes and the PDMS microchannel are fabricated using MEMS fabrication process. After oxygen plasma surface treatment, the PDMS microchannel and glass substrate with the ITO microelectrodes are aligned and bonded to form experimental microfluidic chip. Through DEP experiment with the varying frequencies, DEP response of yeast cells is examined, and the electric field frequency of the both positive and negative DEP responses are confirmed. The results showed that yeast cells in solution conductivity of 60 μS/cm had negative DEP movement at the frequency of 1 kHz to 10 kHz, positive DEP movement at the 500 kHz to 10 MHz, and no DEP movement at the 50 kHz. Under the condition of the sinusoidal potential of 8Vp-p and the electric field frequency of 5 MHz, the yeast cells were aligned into chains along the "step" edge of microelectrodes.