水利与建筑工程学报
水利與建築工程學報
수리여건축공정학보
TECHNIQUE OF SEEPAGE CONTROL
2014年
5期
42-45,72
,共5页
支持向量机%遗传算法%参数寻优%径流预报
支持嚮量機%遺傳算法%參數尋優%徑流預報
지지향량궤%유전산법%삼수심우%경류예보
support vector machine (SVM)%genetic algorithm%parameter optimization%run-off prediction
支持向量机在径流中长期预报的应用中,普遍采用网格搜索法率定其参数,存在耗时较长、参数选取不当而导致预报精度低等问题,针对该问题提出了一种基于遗传算法的支持向量机模型,该模型结合遗传算法收敛速度快的特点对支持向量机参数进行优化选择,实现参数的全局自动化选取。应用乌江流域某电站的径流预报结果显示,相对于基于网格搜索参数寻优的支持向量机模型及神经网络模型,基于遗传算法参数寻优的支持向量机模型预报精度更高,泛化能力更强。
支持嚮量機在徑流中長期預報的應用中,普遍採用網格搜索法率定其參數,存在耗時較長、參數選取不噹而導緻預報精度低等問題,針對該問題提齣瞭一種基于遺傳算法的支持嚮量機模型,該模型結閤遺傳算法收斂速度快的特點對支持嚮量機參數進行優化選擇,實現參數的全跼自動化選取。應用烏江流域某電站的徑流預報結果顯示,相對于基于網格搜索參數尋優的支持嚮量機模型及神經網絡模型,基于遺傳算法參數尋優的支持嚮量機模型預報精度更高,汎化能力更彊。
지지향량궤재경류중장기예보적응용중,보편채용망격수색법솔정기삼수,존재모시교장、삼수선취불당이도치예보정도저등문제,침대해문제제출료일충기우유전산법적지지향량궤모형,해모형결합유전산법수렴속도쾌적특점대지지향량궤삼수진행우화선택,실현삼수적전국자동화선취。응용오강류역모전참적경류예보결과현시,상대우기우망격수색삼수심우적지지향량궤모형급신경망락모형,기우유전산법삼수심우적지지향량궤모형예보정도경고,범화능력경강。
In the predication of mid-term and long-term run-off by using the support vector machine (SVM ) ,the grid-re-search method is commonly applied for parameter calibration .This method is time-consuming and often causes low accu-racy in predication if the parameters were calibrated unwisely .To solve these problems ,a SVM model based on genetic algorithm was proposed in this paper .This model ,which adopted the rapid convergence rate of the genetic algorithm ,re-alized optimized parameter calibration ,and made it possible for overall automatic parameter calibration .A case study of a hydropower station on Wujiang River was presented to verify the feasibility of the proposed method .The comparison of the forecast results between the proposed method and the SVM method based on grid-research and neural network algorithm indicates that the proposed method possesses higher forecasting accuracy and stronger generalization ability .