地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2014年
6期
989-996
,共8页
阎福礼%刘韶菲%王世新%周艺
閻福禮%劉韶菲%王世新%週藝
염복례%류소비%왕세신%주예
藻类颗粒%后向散射系数%分离%富营养化水体
藻類顆粒%後嚮散射繫數%分離%富營養化水體
조류과립%후향산사계수%분리%부영양화수체
phytoplankton%backscattering coefficients%partitioning%eutrophic water
浮游藻类的后向散射是水体光谱构成的重要组成部分,作为水体辐射传输模型中的重要参数,高精度的藻类后向散射系数对水体叶绿素a浓度的遥感反演精度至关重要。本文以简化的辐射传输模型-生物光学模型为基础,尝试性分离了太湖浮游藻类的后向散射系数。通过藻类后向散射规律分析,建立了浮游藻类吸收、后向散射特征的叶绿素a反演模型,改善了叶绿素a浓度的遥感反演精度。分析表明:藻类颗粒物的后向散射系数与吸收系数之间存在反比关系,且在560 nm、700 nm附近存在明显的散射峰,与叶绿素a浓度之间相关性显著;低密度藻类水体总悬浮颗粒的后向散射以非色素颗粒为主导,适合采用经典的指数模型模拟后向散射系数,而藻类密度较高的富营养化水体,水体总悬浮颗粒的后向散射以藻类颗粒为主导,传统的指数模型已不适用;采用分离藻类后向散射系数的方法,使得叶绿素a浓度的反演值与真实值相关系数从0.66提高到0.98,相对误差从55%降低到38%,均方根误差(RMSE)也由60.95μg/L降低至13.98μg/L。其真实性检验表明,与经典指数模型方法相比,利用藻类颗粒后向散射分离方法反演叶绿素a浓度,能够显著改善反演精度。
浮遊藻類的後嚮散射是水體光譜構成的重要組成部分,作為水體輻射傳輸模型中的重要參數,高精度的藻類後嚮散射繫數對水體葉綠素a濃度的遙感反縯精度至關重要。本文以簡化的輻射傳輸模型-生物光學模型為基礎,嘗試性分離瞭太湖浮遊藻類的後嚮散射繫數。通過藻類後嚮散射規律分析,建立瞭浮遊藻類吸收、後嚮散射特徵的葉綠素a反縯模型,改善瞭葉綠素a濃度的遙感反縯精度。分析錶明:藻類顆粒物的後嚮散射繫數與吸收繫數之間存在反比關繫,且在560 nm、700 nm附近存在明顯的散射峰,與葉綠素a濃度之間相關性顯著;低密度藻類水體總懸浮顆粒的後嚮散射以非色素顆粒為主導,適閤採用經典的指數模型模擬後嚮散射繫數,而藻類密度較高的富營養化水體,水體總懸浮顆粒的後嚮散射以藻類顆粒為主導,傳統的指數模型已不適用;採用分離藻類後嚮散射繫數的方法,使得葉綠素a濃度的反縯值與真實值相關繫數從0.66提高到0.98,相對誤差從55%降低到38%,均方根誤差(RMSE)也由60.95μg/L降低至13.98μg/L。其真實性檢驗錶明,與經典指數模型方法相比,利用藻類顆粒後嚮散射分離方法反縯葉綠素a濃度,能夠顯著改善反縯精度。
부유조류적후향산사시수체광보구성적중요조성부분,작위수체복사전수모형중적중요삼수,고정도적조류후향산사계수대수체협록소a농도적요감반연정도지관중요。본문이간화적복사전수모형-생물광학모형위기출,상시성분리료태호부유조류적후향산사계수。통과조류후향산사규률분석,건립료부유조류흡수、후향산사특정적협록소a반연모형,개선료협록소a농도적요감반연정도。분석표명:조류과립물적후향산사계수여흡수계수지간존재반비관계,차재560 nm、700 nm부근존재명현적산사봉,여협록소a농도지간상관성현저;저밀도조류수체총현부과립적후향산사이비색소과립위주도,괄합채용경전적지수모형모의후향산사계수,이조류밀도교고적부영양화수체,수체총현부과립적후향산사이조류과립위주도,전통적지수모형이불괄용;채용분리조류후향산사계수적방법,사득협록소a농도적반연치여진실치상관계수종0.66제고도0.98,상대오차종55%강저도38%,균방근오차(RMSE)야유60.95μg/L강저지13.98μg/L。기진실성검험표명,여경전지수모형방법상비,이용조류과립후향산사분리방법반연협록소a농도,능구현저개선반연정도。
As key parameters in bio-optical model, the backscattering coefficients of phytoplankton plays an im-portant role in modelling the reflectance spectra and retrieving chlorophyll-a (CHL-a) concentrations from eutro-phic water. An exponential model is usually used to simulate the total backscattering coefficients by omitting the phytoplankton backscattering in inland water characterized by lower concentrations of CHL-a. However, the ex-ponential model is not valid for inland water with high CHL-a concentrations, and high relative errors and resi-dues may exist in retrieving the CHL-a concentrations in the algae blooming area, due to the errors made by omitting or introducing inaccurate backscattering coefficients of phytoplankton. Therefore, a precise determina-tion of the phytoplankton backscattering coefficients is of great importance in retrieving chlorophyll-a concentra-tions. Based on the classical bio-optical model, we proposed a method to partition the phytoplankton backscatter-ing coefficients. The variations of the backscattering coefficients of phytoplankton particles with wavelengths in 400~700 nm and the chlorophyll-a concentrations are illustrated and discussed in details. According to the results mentioned above, following conclusions are drawn:(a) it is appropriate to model the total backscattering coeffi-cients by using exponential function in most Case 2 waters with lower concentrations of Chlorophyll-a, where the non-algal suspended sediments dominated the optical properties. However, it is not applicable in eutrophic waters with higher concentrations of chlorophyll-a, where the algal particles dominated the optical properties;(b) phytoplankton backscattering coefficients vary inversely to their absorption coefficients, and two backscatter-ing peaks emerge in the wavelengths of 560nm and 700nm, which are significantly correlated with CHL-a con-centrations; (c) compare to the exponential model, the accuracy of the bio-optical model using the partitioned phytoplankton backscattering coefficients has improved greatly:the correlation coefficient between the retrieved and the measured CHL-a is increased from 0.66 to 0.98, the average relative error decreases from 55%to 38%, and the RMSE decreases from 60.95 to 13.98 in estimating CHL-a concentrations.