地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2014年
6期
958-964
,共7页
王轶夫%岳天祥%赵明伟%杜正平%刘向锋%刘爽%宋二非%孙文正%张彦丽
王軼伕%嶽天祥%趙明偉%杜正平%劉嚮鋒%劉爽%宋二非%孫文正%張彥麗
왕질부%악천상%조명위%두정평%류향봉%류상%송이비%손문정%장언려
机载激光雷达%HASM%树高%天涝池%天然次生林
機載激光雷達%HASM%樹高%天澇池%天然次生林
궤재격광뢰체%HASM%수고%천로지%천연차생림
airborne LIDAR%HASM%tree height%Tianlaochi%natural secondary forest
利用机载激光雷达数据提取天然次生林的树高,旨在探索影响树高提取精度的主要因素。首先,采用高精度曲面建模平差算法(Adjustment Computation of High-accuracy Surface Modeling,HASM-AD)生成研究区不同空间分辨率的数字高程模型(Digital Elevation Model,DEM)、数字地表模型(Digital Surface Model,DSM)和冠层高度模型(Canopy Height Model,CHM);其次,用树顶点识别算法提取林木树高,设置不同树高识别范围,对比分析不同CHM分辨率和不同树高识别范围对树高提取精度的影响;最后,以天涝池流域30个实测样地数据为样本,对提取精度进行检验。结果显示:提取的样地平均树高与实测值具有明显线性相关关系,线性回归系数为0.694;树高识别范围是影响树高提取精度的重要因素,CHM分辨率对其影响较小。研究表明,采用高采样密度的雷达点云数据、正确选择CHM生成方法和改进树顶点识别算法是提高天然次生林树高提取精度的有效途径。
利用機載激光雷達數據提取天然次生林的樹高,旨在探索影響樹高提取精度的主要因素。首先,採用高精度麯麵建模平差算法(Adjustment Computation of High-accuracy Surface Modeling,HASM-AD)生成研究區不同空間分辨率的數字高程模型(Digital Elevation Model,DEM)、數字地錶模型(Digital Surface Model,DSM)和冠層高度模型(Canopy Height Model,CHM);其次,用樹頂點識彆算法提取林木樹高,設置不同樹高識彆範圍,對比分析不同CHM分辨率和不同樹高識彆範圍對樹高提取精度的影響;最後,以天澇池流域30箇實測樣地數據為樣本,對提取精度進行檢驗。結果顯示:提取的樣地平均樹高與實測值具有明顯線性相關關繫,線性迴歸繫數為0.694;樹高識彆範圍是影響樹高提取精度的重要因素,CHM分辨率對其影響較小。研究錶明,採用高採樣密度的雷達點雲數據、正確選擇CHM生成方法和改進樹頂點識彆算法是提高天然次生林樹高提取精度的有效途徑。
이용궤재격광뢰체수거제취천연차생림적수고,지재탐색영향수고제취정도적주요인소。수선,채용고정도곡면건모평차산법(Adjustment Computation of High-accuracy Surface Modeling,HASM-AD)생성연구구불동공간분변솔적수자고정모형(Digital Elevation Model,DEM)、수자지표모형(Digital Surface Model,DSM)화관층고도모형(Canopy Height Model,CHM);기차,용수정점식별산법제취림목수고,설치불동수고식별범위,대비분석불동CHM분변솔화불동수고식별범위대수고제취정도적영향;최후,이천로지류역30개실측양지수거위양본,대제취정도진행검험。결과현시:제취적양지평균수고여실측치구유명현선성상관관계,선성회귀계수위0.694;수고식별범위시영향수고제취정도적중요인소,CHM분변솔대기영향교소。연구표명,채용고채양밀도적뢰체점운수거、정학선택CHM생성방법화개진수정점식별산법시제고천연차생림수고제취정도적유효도경。
The purpose of this study is to evaluate the accuracy of extracting average height of natural secondary forest using airborne LIDAR data and to explore the problems that accompany. The DSMs and DEMs with differ-entspatial resolutions were simulated, by applying HASM-AD algorithm. DSM minus DEM gives CHM, and the tree heights were extracted from CHM. We applied tree vertex recognition algorithm with different recognition scopes. Using 30 measured plot data for verification, we tried to express how CHM spatial revolutionand recog-nition scope could affect tree height extraction accuracy. Firstly, we produced the 0.5 m resolution of CHM and gave 3 trials with setting the recognition scope radius as 0.5 m, 1.0 m and 1.5 m consecutively. The contrast be-tween the results showed that the number of tree vertices extracted was the largest when the recognition scope ra-dius was set as 0.5 m. The algorithm??s ability to recognize tree vertex decreases as recognition scope radius in-creases. Then, we set the recognition scope radius as 0.5 m unchanged and gave 3 trials in which we extracted tree vertex from different CHM with 3 different resolutions (0.1 m, 0.25 m, 0.5 m). The results showed that the number of tree vertices extracted in 3 trials were close. In other words, the recognition scope radius could hardly influence tree vertex extraction. Finally, we compared the average value of the extracted tree heights in each plot to the average of the measured values. The result showed that they were highly correlated with each other, and the regression coefficient between them was 0.694. In conclusion, the recognition scope radius has great influ-ence on tree vertex extraction, while resolution of CHM has little influence on tree vertex extraction. Increasing the sampling density of LIDAR data, choosing an appropriate CHM simulation method and improving the tree vertex recognition algorithm can increase the accuracy of tree height extraction.