地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2014年
6期
882-889
,共8页
王婷婷%杨昕%叶娟娟%王琛智
王婷婷%楊昕%葉娟娟%王琛智
왕정정%양흔%협연연%왕침지
裂点%多尺度DEM%尺度效应%庐山地区%幂函数模型
裂點%多呎度DEM%呎度效應%廬山地區%冪函數模型
렬점%다척도DEM%척도효응%려산지구%멱함수모형
knickpoints%multi-scale DEM%scale effect%Mount Lu region%power function model
以不同尺度DEM数据提取裂点及其效应存在较大差异。本文以1:1万DEM为基础数据,通过小波分析生成多尺度DEM数据。以庐山地区16条河流为例,实现了多尺度DEM数据的河流裂点提取,探讨了河流裂点的变化规律,并构建了裂点个数的尺度预测模型。实验结果表明:(1)采用河道纵剖面与点坡降相结合的方法可快速准确地判断裂点;(2)在庐山地区,1:1万DEM数据可准确判断高差不小于5 m的裂点,对于高差小于5 m的裂点由于DEM表达精度和数据误差,而无法准确判定;(3)DEM尺度对裂点提取影响显著,裂点个数随着DEM分辨率降低逐渐减少,符合幂函数递减规律;(4)通过与ASTER GDEM和SRTM DEM对比验证,本文所构建的裂点个数与DEM尺度的拟合模型具有一定的预测精度。
以不同呎度DEM數據提取裂點及其效應存在較大差異。本文以1:1萬DEM為基礎數據,通過小波分析生成多呎度DEM數據。以廬山地區16條河流為例,實現瞭多呎度DEM數據的河流裂點提取,探討瞭河流裂點的變化規律,併構建瞭裂點箇數的呎度預測模型。實驗結果錶明:(1)採用河道縱剖麵與點坡降相結閤的方法可快速準確地判斷裂點;(2)在廬山地區,1:1萬DEM數據可準確判斷高差不小于5 m的裂點,對于高差小于5 m的裂點由于DEM錶達精度和數據誤差,而無法準確判定;(3)DEM呎度對裂點提取影響顯著,裂點箇數隨著DEM分辨率降低逐漸減少,符閤冪函數遞減規律;(4)通過與ASTER GDEM和SRTM DEM對比驗證,本文所構建的裂點箇數與DEM呎度的擬閤模型具有一定的預測精度。
이불동척도DEM수거제취렬점급기효응존재교대차이。본문이1:1만DEM위기출수거,통과소파분석생성다척도DEM수거。이려산지구16조하류위례,실현료다척도DEM수거적하류렬점제취,탐토료하류렬점적변화규률,병구건료렬점개수적척도예측모형。실험결과표명:(1)채용하도종부면여점파강상결합적방법가쾌속준학지판단렬점;(2)재려산지구,1:1만DEM수거가준학판단고차불소우5 m적렬점,대우고차소우5 m적렬점유우DEM표체정도화수거오차,이무법준학판정;(3)DEM척도대렬점제취영향현저,렬점개수수착DEM분변솔강저축점감소,부합멱함수체감규률;(4)통과여ASTER GDEM화SRTM DEM대비험증,본문소구건적렬점개수여DEM척도적의합모형구유일정적예측정도。
Knickpoints are fundamental for understanding local erosion basis and the evolution of fluvial land-forms. To extract the knickpoints, Digital Elevation Model (DEM) is widely adopted as the basic data in litera-tures. However, the accuracy of the extraction is greatly influenced by the DEM resolution. In this paper, to ex-plore the influence of DEM resolution on the extraction of knickpoints, we analyzed the gradient of the fluvial longitudinal profiles to extract the knickpoints in Mount Lu area based on DEM and Digital Line Graphic (DLG). Firstly, the longitudinal profiles of the 16 streams with elevations are derived from 5 m DEM, from which the potential knickpoints are extracted from an empirical gradient domain. Secondly, to find a suitable gra-dient domain, a field investigation of four typical rivers, including Three-Step Spring and Crane Ravine, is car-ried out to collect the spatial positions of 30 knickpoints with GPS. Thirdly, multiple resolutions of DEM data are generated by wavelet transformation based on the 5 m DEM. The knickpoints in each scale are extracted in the same way from the corresponding DEM. Finally, the influence of the DEM resolution on the accuracy of knickpoints is discussed. The experiment results reveal that the suitable threshold of gradient domain for 5 m DEM is 0.6, by which the knickpoints’altitude differences are greater than 5 m. The number of knickpoints is subject to a power function of the DEM resolution. As the DEM resolution coarsens, the number of knickpoints decreases. To verify this power function, the ASTER GDEM and SRTM DEM data are used, which reveals the consistency between the extracted knickpoints from the DEMs and the predicted ones from the function.