长春理工大学学报(自然科学版)
長春理工大學學報(自然科學版)
장춘리공대학학보(자연과학판)
JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
5期
137-140,145
,共5页
田野%徐洪华%李福善
田野%徐洪華%李福善
전야%서홍화%리복선
人工智能%全局优化%人工蜂群算法%交叉策略
人工智能%全跼優化%人工蜂群算法%交扠策略
인공지능%전국우화%인공봉군산법%교차책략
artificial intelligence%global optimization%artificial bee colony%crossover strategy
人工蜂群算法是近年来提出的一种受生物行为启发的优化算法,该算法主要通过模拟蜜蜂的觅食来实现问题的求解。作为一种全局优化算法,人工蜂群算法有着较好的探寻能力,但其探索能力相对较弱。针对人工蜂群算法收敛速度缓慢的问题,提出基于scout蜂交叉觅食的改进人工蜂群算法。该算法通过交叉策略来指导scout蜂的觅食行为,避免了随机觅食带来的算法收敛速度缓慢的问题,提高算法的收敛速度。通过五个基准测试函数进行对比实验,结果表明新算法无论是在收敛速度、解的质量方面都优于标准人工蜂群算法,是一种有效的优化算法。
人工蜂群算法是近年來提齣的一種受生物行為啟髮的優化算法,該算法主要通過模擬蜜蜂的覓食來實現問題的求解。作為一種全跼優化算法,人工蜂群算法有著較好的探尋能力,但其探索能力相對較弱。針對人工蜂群算法收斂速度緩慢的問題,提齣基于scout蜂交扠覓食的改進人工蜂群算法。該算法通過交扠策略來指導scout蜂的覓食行為,避免瞭隨機覓食帶來的算法收斂速度緩慢的問題,提高算法的收斂速度。通過五箇基準測試函數進行對比實驗,結果錶明新算法無論是在收斂速度、解的質量方麵都優于標準人工蜂群算法,是一種有效的優化算法。
인공봉군산법시근년래제출적일충수생물행위계발적우화산법,해산법주요통과모의밀봉적멱식래실현문제적구해。작위일충전국우화산법,인공봉군산법유착교호적탐심능력,단기탐색능력상대교약。침대인공봉군산법수렴속도완만적문제,제출기우scout봉교차멱식적개진인공봉군산법。해산법통과교차책략래지도scout봉적멱식행위,피면료수궤멱식대래적산법수렴속도완만적문제,제고산법적수렴속도。통과오개기준측시함수진행대비실험,결과표명신산법무론시재수렴속도、해적질량방면도우우표준인공봉군산법,시일충유효적우화산법。
Artificial bee colony (ABC) algorithm invented recently is a biological-inspired optimization algorithm, which simulates the foraging behaviors of honey bee swarm. As one of the global optimization algorithms, ABC is good at exploration but poor at exploitation. A modified artificial bee colony (MABC) algorithm based on crossover strategy of scout is proposed for slow convergence of basic ABC. MABC avoids the problem of slow convergence came with ran-dom foraging and increases the convergence speed by means of crossover strategy which guides the scout foraging be-havior. The proposed algorithm is tested on five different scale problems and compared with basic ABC. The compari-son results show that MABC is an effective algorithm, and is better than basic ABC in not only the convergence speed but also the solution quality.