软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2014年
10期
2293-2311
,共19页
蒋亦樟%邓赵红%王骏%钱鹏江%王士同
蔣亦樟%鄧趙紅%王駿%錢鵬江%王士同
장역장%산조홍%왕준%전붕강%왕사동
多视角聚类%协同学习%Havrda-Charvat熵%香农熵%模糊C均值聚类
多視角聚類%協同學習%Havrda-Charvat熵%香農熵%模糊C均值聚類
다시각취류%협동학습%Havrda-Charvat적%향농적%모호C균치취류
multi-view clustering%collaborative learning%Havrda-Charvat entropy%Shannon entropy%fuzzy C-means
当前,基于协同学习机制的多视角聚类技术存在如下两点不足:第一,以往构造的用于各视角协同学习的逼近准则物理含义不明确且控制简单;第二,以往算法均默认各视角的重要性程度是相等的,缺少各视角重要性自适应调整的能力。针对上述不足:首先,基于具有良好物理解释性的Havrda-Charvat熵构造了一个全新的异视角空间划分逼近准则,该准则能有效地控制异视角间的空间划分相似程度;其次,基于香农熵理论提出了多视角自适应加权策略,可有效地控制各视角的重要性程度,提高算法的聚类性能;最后,基于FCM框架提出了熵加权多视角协同划分模糊聚类算法(entropy weight-collaborative partition-multi-view fuzzy clustering algorithm,简称EW-CoP-MVFCM)。在模拟数据集以及 UCI 数据集上的实验结果均显示,所提算法较之已有多视角聚类算法在应对多视角聚类任务时具有更好的适应性。
噹前,基于協同學習機製的多視角聚類技術存在如下兩點不足:第一,以往構造的用于各視角協同學習的逼近準則物理含義不明確且控製簡單;第二,以往算法均默認各視角的重要性程度是相等的,缺少各視角重要性自適應調整的能力。針對上述不足:首先,基于具有良好物理解釋性的Havrda-Charvat熵構造瞭一箇全新的異視角空間劃分逼近準則,該準則能有效地控製異視角間的空間劃分相似程度;其次,基于香農熵理論提齣瞭多視角自適應加權策略,可有效地控製各視角的重要性程度,提高算法的聚類性能;最後,基于FCM框架提齣瞭熵加權多視角協同劃分模糊聚類算法(entropy weight-collaborative partition-multi-view fuzzy clustering algorithm,簡稱EW-CoP-MVFCM)。在模擬數據集以及 UCI 數據集上的實驗結果均顯示,所提算法較之已有多視角聚類算法在應對多視角聚類任務時具有更好的適應性。
당전,기우협동학습궤제적다시각취류기술존재여하량점불족:제일,이왕구조적용우각시각협동학습적핍근준칙물리함의불명학차공제간단;제이,이왕산법균묵인각시각적중요성정도시상등적,결소각시각중요성자괄응조정적능력。침대상술불족:수선,기우구유량호물리해석성적Havrda-Charvat적구조료일개전신적이시각공간화분핍근준칙,해준칙능유효지공제이시각간적공간화분상사정도;기차,기우향농적이론제출료다시각자괄응가권책략,가유효지공제각시각적중요성정도,제고산법적취류성능;최후,기우FCM광가제출료적가권다시각협동화분모호취류산법(entropy weight-collaborative partition-multi-view fuzzy clustering algorithm,간칭EW-CoP-MVFCM)。재모의수거집이급 UCI 수거집상적실험결과균현시,소제산법교지이유다시각취류산법재응대다시각취류임무시구유경호적괄응성。
There are two weaknesses of current multi-view clustering technologies based on collaborative learning. Firstly, the approximation-criteria of collaborative learning between each view is not clear for its physical meaning and is too simple to control the approximation-performance. Secondly, the existing algorithms assume that the significance of each view is equal, which is obviously inappropriate from the viewpoint of adaptively adjusting the importance of each view. In order to overcome the above shortcomings, a novel approximation-criteria of cluster partition based on the Havrda-Charvat entropy is proposed to control the similarity of cluster partition between each view. Then, an adaptive weighting strategy for each view based on the theory of Shannon entropy is presented to control the significance of each view and enhance the performance of the clustering algorithm. Finally, the collaborative partition multi-view fuzzy clustering algorithm using entropy weighting (EW-CoP-MVFCM) is provided. As demonstrated by extensive experiments in simulation data and UCI benchmark dataset, the proposed new algorithm shows the better adaptability than the classical algorithms on the multi-view clustering problems.