电子测量与仪器学报
電子測量與儀器學報
전자측량여의기학보
JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT
2014年
10期
1074-1083
,共10页
杨洪涛%孙帅%方传智%牛明强
楊洪濤%孫帥%方傳智%牛明彊
양홍도%손수%방전지%우명강
靶物材质识别%反射声信号%经验模态分解%本征模态函数%短时能量比%最小二乘支持向量机
靶物材質識彆%反射聲信號%經驗模態分解%本徵模態函數%短時能量比%最小二乘支持嚮量機
파물재질식별%반사성신호%경험모태분해%본정모태함수%단시능량비%최소이승지지향량궤
target material identification%reflective sound signal%empirical mode decomposition%intrinsic mode function%short-time energy entropy%least squares support vector machine
为了利用靶物反射声有效识别靶物材质,提出了一种新的基于经验模态分解( EMD)和最小二乘支持向量机( LS-SVM)相结合的靶物材质识别方法。首先应用模极大值算法识别靶物边界点,提取边界点内的反射声信号进行小波降噪预处理,对预处理后的信号进行EMD分解,并计算获得各个本证模态( IMF)分量的短时能量比,作为对应不同靶物材质的特征值输入到利用LS-SVM建立的多分类模型。介绍了上述方法的基本原理,设计了试验装置和靶物材质识别影响因素分析试验方案。实验结果表明:靶物的内部结构和外形大小因素对靶物材质识别率影响小,利用上述方法进行的四种靶物材质探测,平均识别率达到85.83%,比BP神经网络提高了18.83%,且运算速度也得以提高,因此该方法可以用于靶物材质的识别。
為瞭利用靶物反射聲有效識彆靶物材質,提齣瞭一種新的基于經驗模態分解( EMD)和最小二乘支持嚮量機( LS-SVM)相結閤的靶物材質識彆方法。首先應用模極大值算法識彆靶物邊界點,提取邊界點內的反射聲信號進行小波降譟預處理,對預處理後的信號進行EMD分解,併計算穫得各箇本證模態( IMF)分量的短時能量比,作為對應不同靶物材質的特徵值輸入到利用LS-SVM建立的多分類模型。介紹瞭上述方法的基本原理,設計瞭試驗裝置和靶物材質識彆影響因素分析試驗方案。實驗結果錶明:靶物的內部結構和外形大小因素對靶物材質識彆率影響小,利用上述方法進行的四種靶物材質探測,平均識彆率達到85.83%,比BP神經網絡提高瞭18.83%,且運算速度也得以提高,因此該方法可以用于靶物材質的識彆。
위료이용파물반사성유효식별파물재질,제출료일충신적기우경험모태분해( EMD)화최소이승지지향량궤( LS-SVM)상결합적파물재질식별방법。수선응용모겁대치산법식별파물변계점,제취변계점내적반사성신호진행소파강조예처리,대예처리후적신호진행EMD분해,병계산획득각개본증모태( IMF)분량적단시능량비,작위대응불동파물재질적특정치수입도이용LS-SVM건립적다분류모형。개소료상술방법적기본원리,설계료시험장치화파물재질식별영향인소분석시험방안。실험결과표명:파물적내부결구화외형대소인소대파물재질식별솔영향소,이용상술방법진행적사충파물재질탐측,평균식별솔체도85.83%,비BP신경망락제고료18.83%,차운산속도야득이제고,인차해방법가이용우파물재질적식별。
In order to identify target material effectively by using the reflective sound of target ,a new identification method of the target material based on empirical mode decomposition ( EMD) and least squares support vector ma-chine (LS-SVM) is presented.The signal border indicating where the target locates was identified by using modulus maxima algorithm .The reflective sound signal within the border was extracted and was processed by applying wave-let noise reduction to reduce the noise .The pretreated reflective sound signal was decomposed by using EMD meth-od and the short-time energy ratio of every decomposed IMF was calculated ,which was considered as the eigenval-ues of target and was input into target identification model .The basic principle of the method was described .The ex-perimental equipment was built and the influence factor analysis experiments and the comparative experiments of target identification rate were done .The experimental results show that there is little effect on the target material identification rate.The average target material identification rate can reach 85.83%by using the built target materi-al identification model.There is a increase of 18.83% compared with BP-NN method,and the calculating speed is also improved.So the built target material identification model can be used for the target material identification .