化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
11期
4543-4550
,共8页
丁雪兴%严如奇%陈金林%翟霄
丁雪興%嚴如奇%陳金林%翟霄
정설흥%엄여기%진금림%적소
机械密封%摩擦界面%温度%分形理论%密度函数
機械密封%摩抆界麵%溫度%分形理論%密度函數
궤계밀봉%마찰계면%온도%분형이론%밀도함수
mechanical seal%frictional interface%temperature%fractal theory%density function
为揭示接触式机械密封摩擦界面的温度分布规律,用分形参数表征机械密封端面形貌特性,根据重新建立的微凸体接触变形方式,结合热传导和概率理论建立了机械密封摩擦界面最大温度以及温度分布的分形模型并用数值方法对其最大温度、温度分布规律以及影响因素进行了分析。研究结果表明,当分形维数一定时,随着转速的增大,密封界面最大温度呈线性增大;当转速一定时,随着分形维数的增大,密封界面最大温度呈非线性减小;随着量纲1特征尺度的增大,量纲1最大接触温度也在增大。当已知润滑膜汽化温度时,由温度分布密度函数,可以求出处于非正常润滑部分的真实接触面积,为进一步研究磨损、热破坏提供基础,这对接触式机械密封的实际运行和密封端面的设计具有重要的意义。
為揭示接觸式機械密封摩抆界麵的溫度分佈規律,用分形參數錶徵機械密封耑麵形貌特性,根據重新建立的微凸體接觸變形方式,結閤熱傳導和概率理論建立瞭機械密封摩抆界麵最大溫度以及溫度分佈的分形模型併用數值方法對其最大溫度、溫度分佈規律以及影響因素進行瞭分析。研究結果錶明,噹分形維數一定時,隨著轉速的增大,密封界麵最大溫度呈線性增大;噹轉速一定時,隨著分形維數的增大,密封界麵最大溫度呈非線性減小;隨著量綱1特徵呎度的增大,量綱1最大接觸溫度也在增大。噹已知潤滑膜汽化溫度時,由溫度分佈密度函數,可以求齣處于非正常潤滑部分的真實接觸麵積,為進一步研究磨損、熱破壞提供基礎,這對接觸式機械密封的實際運行和密封耑麵的設計具有重要的意義。
위게시접촉식궤계밀봉마찰계면적온도분포규률,용분형삼수표정궤계밀봉단면형모특성,근거중신건립적미철체접촉변형방식,결합열전도화개솔이론건립료궤계밀봉마찰계면최대온도이급온도분포적분형모형병용수치방법대기최대온도、온도분포규률이급영향인소진행료분석。연구결과표명,당분형유수일정시,수착전속적증대,밀봉계면최대온도정선성증대;당전속일정시,수착분형유수적증대,밀봉계면최대온도정비선성감소;수착량강1특정척도적증대,량강1최대접촉온도야재증대。당이지윤활막기화온도시,유온도분포밀도함수,가이구출처우비정상윤활부분적진실접촉면적,위진일보연구마손、열파배제공기출,저대접촉식궤계밀봉적실제운행화밀봉단면적설계구유중요적의의。
In order to reveal the temperature distribution of the frictional interface mechanical seals, the end face morphology of mechanical seals was characterized by fractal parameters. According to re-established contact deformation model of the micro-convex body, the fractal model of the maximum temperature and the temperature distribution of mechanical seals were established by heat exchange and probability theory. With numerical methods its maximum temperature, temperature distribution and influence factors were analyzed. The highest temperature of frictional interfaces increased linearly with increasing rotating speed when fractal dimension was constant. But the highest temperature of frictional interfaces decreased nonlinearly with increasing fractal dimension when rotating speed was constant. Dimensionless maximum contact temperature also increased as dimensionless characteristic scale was larger. When lubricant film vaporization temperature was known, the real contact area of the non-normal lubrication part could be calculated by using the temperature distribution density function, providing foundation for further research on wear and heat damage and had great significance both in operating and design of contacting mechanical seals.