光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
11期
3127-3131
,共5页
Haar小波%lasso%支持向量机%特征%恒星%参数
Haar小波%lasso%支持嚮量機%特徵%恆星%參數
Haar소파%lasso%지지향량궤%특정%항성%삼수
Haar wavelet%Lasso%The support vector regression model%Feature%star%Parameters
基于实测光谱的恒星大气物理参数估计是探索恒星本质的首要任务。随着郭守敬望远镜(L A M-OST)进入正式巡天阶段,正以前所未有的速度获取海量的恒星实测光谱数据,这为星系研究带来了新的机遇和挑战。由于LAMOST是多目标光纤光谱天文望远镜,获取的光谱噪音比较大。光谱前期处理中的波长定标和流量定标精度不高,导致光谱存在微小畸变,这些都大大增加了恒星大气物理参数测量的难度。如何对LAMOST实测光谱的恒星大气物理参数进行自动测量是迫切期待需要研究的一个重要课题,关键是如何消除噪声,提高恒星大气物理参数的测量精度和鲁棒性。提出了一个测量LAMOST恒星光谱大气参数的回归模型(SVM (lasso))。基本思路是:首先使用Haar小波对光谱信号进行滤波,抑制光谱中噪声的不利影响,最大限度地保留光谱判别信息。然后采用lasso算法进行特征选择,选取与恒星大气物理参数相关性强的特征。最后将选择的光谱特征输入支持向量机回归模型对恒星大气物理参数进行估计,该模型对光谱畸变和噪音的容忍性比较好,提高了测量的精确度。为了验证上述方案的可行性,在33963条LAMOST先导巡天恒星光谱库上作了实验研究,三个恒星大气物理参数的精度分别为log Teff :0.0068 dex ,log g :0.1551 dex ,[Fe/H ]:0.1040 dex。
基于實測光譜的恆星大氣物理參數估計是探索恆星本質的首要任務。隨著郭守敬望遠鏡(L A M-OST)進入正式巡天階段,正以前所未有的速度穫取海量的恆星實測光譜數據,這為星繫研究帶來瞭新的機遇和挑戰。由于LAMOST是多目標光纖光譜天文望遠鏡,穫取的光譜譟音比較大。光譜前期處理中的波長定標和流量定標精度不高,導緻光譜存在微小畸變,這些都大大增加瞭恆星大氣物理參數測量的難度。如何對LAMOST實測光譜的恆星大氣物理參數進行自動測量是迫切期待需要研究的一箇重要課題,關鍵是如何消除譟聲,提高恆星大氣物理參數的測量精度和魯棒性。提齣瞭一箇測量LAMOST恆星光譜大氣參數的迴歸模型(SVM (lasso))。基本思路是:首先使用Haar小波對光譜信號進行濾波,抑製光譜中譟聲的不利影響,最大限度地保留光譜判彆信息。然後採用lasso算法進行特徵選擇,選取與恆星大氣物理參數相關性彊的特徵。最後將選擇的光譜特徵輸入支持嚮量機迴歸模型對恆星大氣物理參數進行估計,該模型對光譜畸變和譟音的容忍性比較好,提高瞭測量的精確度。為瞭驗證上述方案的可行性,在33963條LAMOST先導巡天恆星光譜庫上作瞭實驗研究,三箇恆星大氣物理參數的精度分彆為log Teff :0.0068 dex ,log g :0.1551 dex ,[Fe/H ]:0.1040 dex。
기우실측광보적항성대기물리삼수고계시탐색항성본질적수요임무。수착곽수경망원경(L A M-OST)진입정식순천계단,정이전소미유적속도획취해량적항성실측광보수거,저위성계연구대래료신적궤우화도전。유우LAMOST시다목표광섬광보천문망원경,획취적광보조음비교대。광보전기처리중적파장정표화류량정표정도불고,도치광보존재미소기변,저사도대대증가료항성대기물리삼수측량적난도。여하대LAMOST실측광보적항성대기물리삼수진행자동측량시박절기대수요연구적일개중요과제,관건시여하소제조성,제고항성대기물리삼수적측량정도화로봉성。제출료일개측량LAMOST항성광보대기삼수적회귀모형(SVM (lasso))。기본사로시:수선사용Haar소파대광보신호진행려파,억제광보중조성적불리영향,최대한도지보류광보판별신식。연후채용lasso산법진행특정선택,선취여항성대기물리삼수상관성강적특정。최후장선택적광보특정수입지지향량궤회귀모형대항성대기물리삼수진행고계,해모형대광보기변화조음적용인성비교호,제고료측량적정학도。위료험증상술방안적가행성,재33963조LAMOST선도순천항성광보고상작료실험연구,삼개항성대기물리삼수적정도분별위log Teff :0.0068 dex ,log g :0.1551 dex ,[Fe/H ]:0.1040 dex。
It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe .With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST ) which begun its formal Sky Survey in September 2012 ,we are obtaining a mass of stellar spectra in an unprecedented speed .It has brought a new op-portunity and a challenge for the research of galaxies .Due to the complexity of the observing system ,the noise in the spectrum is relatively large .At the same time ,the preprocessing procedures of spectrum are also not ideal ,such as the wavelength cali-bration and the flow calibration .Therefore ,there is a slight distortion of the spectrum .They result in the high difficulty of esti-mating the atmospheric parameters for the measured stellar spectra .It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST .The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra .We propose a regression model for es-timating the atmospheric parameters of LAMOST stellar(SVM (lasso)) .The basic idea of this model is :First ,we use the Haar wavelet to filter spectrum ,suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum .Secondly ,We use the lasso algorithm for feature selection and extract the features of strongly correlating with the at-mospheric parameters .Finally ,the features are input to the support vector regression model for estimating the parameters .Be-cause the model has better tolerance to the slight distortion and the noise of the spectrum ,the accuracy of the measurement is im-proved .To evaluate the feasibility of the above scheme ,we conduct experiments extensively on the 33 963 pilot surveys spec-trums by LAMOST .The accuracy of three atmospheric parameters is log Teff :0.006 8 dex ,log g :0.155 1 dex ,[Fe/H]:0.104 0 dex .