光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
11期
3015-3019
,共5页
曹泓%屈稳太%杨祥龙%贾生尧%王春龙%鲁琛
曹泓%屈穩太%楊祥龍%賈生堯%王春龍%魯琛
조홍%굴은태%양상룡%가생요%왕춘룡%로침
紫外可见光谱%水产养殖%有机物%连续投影算法%无信息变量消除%最小二乘-支持向量机
紫外可見光譜%水產養殖%有機物%連續投影算法%無信息變量消除%最小二乘-支持嚮量機
자외가견광보%수산양식%유궤물%련속투영산법%무신식변량소제%최소이승-지지향량궤
Ultraviolet/visible spectroscopy%Aquaculture%Organic matter%Successive projections algorithm%Uninformative variable elimination%Least squares-support vector machine
应用紫外可见(ultraviolet/visible ,UV/Vis)光谱技术对表征水产养殖水体中有机物浓度的指标化学需氧量(chemical oxygen demand ,COD)进行快速测量,对采集到的135份甲鱼养殖水样进行 UV/Vis波段全光谱扫描,采用无信息变量消除(uninformative variable elimination ,UVE)和连续投影算法(successive projections algorithm ,SPA)相结合的变量选择算法选取全波段光谱中的特征波长,从201个 UV/Vis光谱变量中选取了7个特征波长,只占全波段光谱变量的3.48%,降低了建模的时间和模型的复杂度。结合最小二乘支持向量机(least-square support vector machine ,LS-SVM )算法进行COD预测建模,结果表明:使用特征波长建模的预测效果(相关系数 r(correlation coefficient)=0.89,预测均方根误差(root mean square error of prediction ,RMSEP)=15.46 mg · L -1)好于使用全波段光谱建模的预测效果(r=0.88,RMSEP =15.71 mg · L -1)。使用UVE-SPA变量选择算法获取UV/Vis光谱特征波长,结合LS-SVM建模,可以快速、准确的测量水产养殖水体中的COD浓度,为进一步实现水产养殖水质的在线检测以及其他水质参数的快速测定奠定了基础。
應用紫外可見(ultraviolet/visible ,UV/Vis)光譜技術對錶徵水產養殖水體中有機物濃度的指標化學需氧量(chemical oxygen demand ,COD)進行快速測量,對採集到的135份甲魚養殖水樣進行 UV/Vis波段全光譜掃描,採用無信息變量消除(uninformative variable elimination ,UVE)和連續投影算法(successive projections algorithm ,SPA)相結閤的變量選擇算法選取全波段光譜中的特徵波長,從201箇 UV/Vis光譜變量中選取瞭7箇特徵波長,隻佔全波段光譜變量的3.48%,降低瞭建模的時間和模型的複雜度。結閤最小二乘支持嚮量機(least-square support vector machine ,LS-SVM )算法進行COD預測建模,結果錶明:使用特徵波長建模的預測效果(相關繫數 r(correlation coefficient)=0.89,預測均方根誤差(root mean square error of prediction ,RMSEP)=15.46 mg · L -1)好于使用全波段光譜建模的預測效果(r=0.88,RMSEP =15.71 mg · L -1)。使用UVE-SPA變量選擇算法穫取UV/Vis光譜特徵波長,結閤LS-SVM建模,可以快速、準確的測量水產養殖水體中的COD濃度,為進一步實現水產養殖水質的在線檢測以及其他水質參數的快速測定奠定瞭基礎。
응용자외가견(ultraviolet/visible ,UV/Vis)광보기술대표정수산양식수체중유궤물농도적지표화학수양량(chemical oxygen demand ,COD)진행쾌속측량,대채집도적135빈갑어양식수양진행 UV/Vis파단전광보소묘,채용무신식변량소제(uninformative variable elimination ,UVE)화련속투영산법(successive projections algorithm ,SPA)상결합적변량선택산법선취전파단광보중적특정파장,종201개 UV/Vis광보변량중선취료7개특정파장,지점전파단광보변량적3.48%,강저료건모적시간화모형적복잡도。결합최소이승지지향량궤(least-square support vector machine ,LS-SVM )산법진행COD예측건모,결과표명:사용특정파장건모적예측효과(상관계수 r(correlation coefficient)=0.89,예측균방근오차(root mean square error of prediction ,RMSEP)=15.46 mg · L -1)호우사용전파단광보건모적예측효과(r=0.88,RMSEP =15.71 mg · L -1)。사용UVE-SPA변량선택산법획취UV/Vis광보특정파장,결합LS-SVM건모,가이쾌속、준학적측량수산양식수체중적COD농도,위진일보실현수산양식수질적재선검측이급기타수질삼수적쾌속측정전정료기출。
Ultraviolet/visible (UV/Vis) spectroscopy was investigated for the rapid determination of chemical oxygen demand (COD) which was an indicator to measure the concentration of organic matter in aquaculture water .A total number of 135 col-lected turtle breeding water samples were scanned for UV/Vis spectrum ,uninformative variable elimination (UVE) and succes-sive projections algorithm (SPA) were combined as a mixed variable selection method to perform characteristic wavelength selec-tion from the full wavelength spectrum ,7 characteristic wavelengths were selected from full 201 UV/Vis spectral variables , which were just 3 .48% number of the full range spectrum ,and the calibration time and complexity of the modeling were greatly reduced .The predicted results which were obtained by using least squares-support vector machine (LS-SVM) calibration showed that the characteristic wavelengths achieved better results (0.89 for correlation coefficient (r) ,15.46 mg · L -1 for root mean square error of prediction (RMSEP)) than full wavelengths did (0.88 for r and 15.71 mg · L -1 for RMSEP) .The comprehen-sive results revealed that the UV/Vis characteristic wavelengths which were obtained by UVE-SPA variable selection method , combined with LS-SVM calibration could apply to the rapid and accurate determination of COD in aquaculture water .Moreover , this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other w ater quality parameters .