光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
11期
2948-2952
,共5页
赵振英%林君%张福东%李军
趙振英%林君%張福東%李軍
조진영%림군%장복동%리군
油页岩%近红外光谱法%波长选择%相关系数法%移动窗口偏最小二乘法%无信息变量消除法
油頁巖%近紅外光譜法%波長選擇%相關繫數法%移動窗口偏最小二乘法%無信息變量消除法
유혈암%근홍외광보법%파장선택%상관계수법%이동창구편최소이승법%무신식변량소제법
Oil shale%NIRS%Wavelength selection%Correlation coefficient%Moving window PLS%Uninformative variables elimi-nation
波长选择是光谱建模分析的重要步骤。研究了近红外光谱法分析油页岩含油率过程中的波长选择方法,用以剔除光谱数据中的冗余信息和干扰信息,提高分析模型的建模效率和预测能力。分别采用相关系数法(CC)、移动窗口偏最小二乘法(MWPLS)和无信息变量消除法(UVE)对油页岩近红外漫反射光谱数据的波长区间进行了选择,研究了不同阈值、窗口宽度和噪声矩阵对上述方法的影响,建立了所选择波长处的反射率数据和样品含油率标准值间的偏最小二乘(PLS)分析模型,比较了上述方法的选择效果。结果表明:与使用全谱数据建模相比,采用上述方法筛选过的光谱数据均能提高模型的建模效率和预测能力,其中经UVE法筛选后的光谱数据仅占全谱数据总数的22.8%,模型的RMSECV却降低了9.3%,RMSEP降低了4.5%。
波長選擇是光譜建模分析的重要步驟。研究瞭近紅外光譜法分析油頁巖含油率過程中的波長選擇方法,用以剔除光譜數據中的冗餘信息和榦擾信息,提高分析模型的建模效率和預測能力。分彆採用相關繫數法(CC)、移動窗口偏最小二乘法(MWPLS)和無信息變量消除法(UVE)對油頁巖近紅外漫反射光譜數據的波長區間進行瞭選擇,研究瞭不同閾值、窗口寬度和譟聲矩陣對上述方法的影響,建立瞭所選擇波長處的反射率數據和樣品含油率標準值間的偏最小二乘(PLS)分析模型,比較瞭上述方法的選擇效果。結果錶明:與使用全譜數據建模相比,採用上述方法篩選過的光譜數據均能提高模型的建模效率和預測能力,其中經UVE法篩選後的光譜數據僅佔全譜數據總數的22.8%,模型的RMSECV卻降低瞭9.3%,RMSEP降低瞭4.5%。
파장선택시광보건모분석적중요보취。연구료근홍외광보법분석유혈암함유솔과정중적파장선택방법,용이척제광보수거중적용여신식화간우신식,제고분석모형적건모효솔화예측능력。분별채용상관계수법(CC)、이동창구편최소이승법(MWPLS)화무신식변량소제법(UVE)대유혈암근홍외만반사광보수거적파장구간진행료선택,연구료불동역치、창구관도화조성구진대상술방법적영향,건립료소선택파장처적반사솔수거화양품함유솔표준치간적편최소이승(PLS)분석모형,비교료상술방법적선택효과。결과표명:여사용전보수거건모상비,채용상술방법사선과적광보수거균능제고모형적건모효솔화예측능력,기중경UVE법사선후적광보수거부점전보수거총수적22.8%,모형적RMSECV각강저료9.3%,RMSEP강저료4.5%。
The wavelength selection is an important step in the spectra modeling analysis .In the present paper ,three wavelength selection methods ,including correlation coefficient (CC) ,moving window partial least squares (MWPLS) and uninformative variables elimination (UVE) ,were studied for the determination of oil yield in oil shale using near-infrared (NIR) diffuse reflec-tion spectroscopy .The above methods were used to eliminate the redundant and irrelevant variables in spectral data for enhancing the analytic efficiency and predictive ability of calibration model .The effects of thresholds of CC ,window width of MWPLS and noise matrix of UVE were studied .Partial least squares regression was used to build prediction model for predicting oil yield in oil shale ,and the performance of PLS models constructed with and without the using of wavelength selection methods were com-pared .The results show that any of the three methods can simplify the calibration model and improve the performance of model . By using UVE ,the total number of wavelength variables of spectral data ,the RMSECV of calibration model and the RMSEP of prediction model were decreased by 22.8% ,9.3% and 4.5% ,respectively .