中国环境监测
中國環境鑑測
중국배경감측
ENVIRONMENTAL MONITORING IN CHINA
2014年
5期
96-100
,共5页
张榆霞%李宝磊%施择%万国盛
張榆霞%李寶磊%施擇%萬國盛
장유하%리보뢰%시택%만국성
集成径向基函数神经网络%空间插值%土壤重金属%山区
集成徑嚮基函數神經網絡%空間插值%土壤重金屬%山區
집성경향기함수신경망락%공간삽치%토양중금속%산구
integrated radial basis function neural network%spatial interpolation%soil heavy metals%mountain area
山区土壤重金属监测中,密集均匀的布点采样困难大,成本高。根据稀疏非均匀样本数据准确预测山区土壤重金属空间分布,对可视化描述检测元素的分布及趋势具有重要意义。基于云南省楚雄市南部山区表层土壤中重金属锰、钒的采样数据,对集成径向基函数神经网络( IRBFANNs)和传统插值方法:反距离( IDW)、普通克里格( OK)、径向基函数神经网络( RBFANNs),进行了不同等级采样密度下的插值性能比较。结果表明,样本点数量减少时,传统预测方法的插值精度都有所下降,而IRBFANNs算法在样本点较少情况下能够保持最好的插值精确度和稳定性,有效改进了空间插值性能。
山區土壤重金屬鑑測中,密集均勻的佈點採樣睏難大,成本高。根據稀疏非均勻樣本數據準確預測山區土壤重金屬空間分佈,對可視化描述檢測元素的分佈及趨勢具有重要意義。基于雲南省楚雄市南部山區錶層土壤中重金屬錳、釩的採樣數據,對集成徑嚮基函數神經網絡( IRBFANNs)和傳統插值方法:反距離( IDW)、普通剋裏格( OK)、徑嚮基函數神經網絡( RBFANNs),進行瞭不同等級採樣密度下的插值性能比較。結果錶明,樣本點數量減少時,傳統預測方法的插值精度都有所下降,而IRBFANNs算法在樣本點較少情況下能夠保持最好的插值精確度和穩定性,有效改進瞭空間插值性能。
산구토양중금속감측중,밀집균균적포점채양곤난대,성본고。근거희소비균균양본수거준학예측산구토양중금속공간분포,대가시화묘술검측원소적분포급추세구유중요의의。기우운남성초웅시남부산구표층토양중중금속맹、범적채양수거,대집성경향기함수신경망락( IRBFANNs)화전통삽치방법:반거리( IDW)、보통극리격( OK)、경향기함수신경망락( RBFANNs),진행료불동등급채양밀도하적삽치성능비교。결과표명,양본점수량감소시,전통예측방법적삽치정도도유소하강,이IRBFANNs산법재양본점교소정황하능구보지최호적삽치정학도화은정성,유효개진료공간삽치성능。
Dense and regular sampling is usually impractical and expensive for soil heavy metal detection in the mountain region. To improve the quality of visual description for the distribution and the trend of the investigated elements and increase the accuracy of prediction for heavy metals distribution based on sparse sampling data, a spatial interpolation methods based on the integrated radial basis function neural networks ( IRBFANNs ) is compared with traditional methods including inverse distance ( IDW) , ordinary Kriging ( OK) and radial basis function neural network ( RBFANNs) are carried out under different level sampling density based on the sampling data of soil heavy metal Mn and V in a mountain region of Chuxiong city. The results show that the interpolation accuracy decreases as the number of sample points decreases, however, the integration of radial basis function ( RBF) neural network algorithm has the ability to keep the accuracy and the stability of prediction under sparse sampling density condition, and provides the improved spatial interpolation performance.