中国惯性技术学报
中國慣性技術學報
중국관성기술학보
JOURNAL OF CHINESE INERTIAL TECHNOLOGY
2014年
5期
655-659
,共5页
张增平%张福学%张伟%刘宇%张宁
張增平%張福學%張偉%劉宇%張寧
장증평%장복학%장위%류우%장저
敏感元件%扭转梁%扭转刚度%固有频率
敏感元件%扭轉樑%扭轉剛度%固有頻率
민감원건%뉴전량%뉴전강도%고유빈솔
sensing element%torsional beam%torsion stiffness%natural frequency
鉴于常规微机械陀螺的驱动结构和检测结构往往总要进行频率匹配,造成带宽较窄,工艺复杂的问题,设计了一种新的微机械陀螺,安装于旋转飞行器上,利用飞行器的旋转获得角动量,敏感飞行器的偏航和俯仰横向角速度。由于没有驱动结构,所以结构简单,带宽较宽。首先基于这种巧妙的结构建立了敏感元件的振动方程。根据振动方程,扭转梁是影响质量振动模态和模态频率的关键,同时考虑到应力、残余应力的释放以及工作能力,扭转梁设计成横截面积为矩形的弧形梁,并对其抗扭刚度进行了解析推导和计算,从而确定了敏感元件的固有频率。接着利用有限元分析的方法,对其振动模态进行了仿真,仿真结果表明,敏感元件的第一模态是扭转振动,固有频率相对于解析结果的误差为9.86%。为了进一步验证,设计了静电驱动电容检测的方法,实验测试得到的谐振频率和解析值的相对误差为5.21%。仿真和实验结果与理论计算一致,表明扭转梁的设计是合理的,模态分析是正确的,而且为动态性能评估和结构优化提供了理论依据。
鑒于常規微機械陀螺的驅動結構和檢測結構往往總要進行頻率匹配,造成帶寬較窄,工藝複雜的問題,設計瞭一種新的微機械陀螺,安裝于鏇轉飛行器上,利用飛行器的鏇轉穫得角動量,敏感飛行器的偏航和俯仰橫嚮角速度。由于沒有驅動結構,所以結構簡單,帶寬較寬。首先基于這種巧妙的結構建立瞭敏感元件的振動方程。根據振動方程,扭轉樑是影響質量振動模態和模態頻率的關鍵,同時攷慮到應力、殘餘應力的釋放以及工作能力,扭轉樑設計成橫截麵積為矩形的弧形樑,併對其抗扭剛度進行瞭解析推導和計算,從而確定瞭敏感元件的固有頻率。接著利用有限元分析的方法,對其振動模態進行瞭倣真,倣真結果錶明,敏感元件的第一模態是扭轉振動,固有頻率相對于解析結果的誤差為9.86%。為瞭進一步驗證,設計瞭靜電驅動電容檢測的方法,實驗測試得到的諧振頻率和解析值的相對誤差為5.21%。倣真和實驗結果與理論計算一緻,錶明扭轉樑的設計是閤理的,模態分析是正確的,而且為動態性能評估和結構優化提供瞭理論依據。
감우상규미궤계타라적구동결구화검측결구왕왕총요진행빈솔필배,조성대관교착,공예복잡적문제,설계료일충신적미궤계타라,안장우선전비행기상,이용비행기적선전획득각동량,민감비행기적편항화부앙횡향각속도。유우몰유구동결구,소이결구간단,대관교관。수선기우저충교묘적결구건립료민감원건적진동방정。근거진동방정,뉴전량시영향질량진동모태화모태빈솔적관건,동시고필도응력、잔여응력적석방이급공작능력,뉴전량설계성횡절면적위구형적호형량,병대기항뉴강도진행료해석추도화계산,종이학정료민감원건적고유빈솔。접착이용유한원분석적방법,대기진동모태진행료방진,방진결과표명,민감원건적제일모태시뉴전진동,고유빈솔상대우해석결과적오차위9.86%。위료진일보험증,설계료정전구동전용검측적방법,실험측시득도적해진빈솔화해석치적상대오차위5.21%。방진화실험결과여이론계산일치,표명뉴전량적설계시합리적,모태분석시정학적,이차위동태성능평고화결구우화제공료이론의거。
The driving structure and detecting structure of traditional micromechanical gyroscope usually require frequency matching, causing narrow bandwidth and complex process. To solve this problem, a novel micromechanical gyroscope was designed, which is mounted on rotating aircraft, obtains angular momentum by using aircraft spin, and senses yawing and pitching angular velocity. Being without driven structure, the gyro’s structure is simple and with large bandwidth. Based on this new structure, the motion equation was established. According to the vibration equation, the torsional beam is the key to vibrating modal and modal frequency of sensing element. Meanwhile, considering the stress, the residual stress’s release and the working ability, the torsional beam was designed to be a circular beam with rectangular cross-section, and the torsional stiffness is analytically derived and calculated to determine the natural frequency. Then the vibrating modal is simulated by using finite element analysis (FEA) method. Simulation results show that the first mode is torsional vibrating, in which the relative error between natural frequency and analytical solution is 9.86%. In order to make further validation, an experimental method using the electrostatic driving and capacitance detection was designed, and the experimental results show that the relative error between natural frequency and analytical solution is 5.21%. Both simulation and experimental results demonstrate that the design is reasonable, and the modal analysis about torsional beam is correct. And it can be applied to the dynamic performance evaluation and the structure optimization.