中国惯性技术学报
中國慣性技術學報
중국관성기술학보
JOURNAL OF CHINESE INERTIAL TECHNOLOGY
2014年
5期
634-639
,共6页
胡高歌%刘逸涵%高社生%杨一
鬍高歌%劉逸涵%高社生%楊一
호고가%류일함%고사생%양일
强跟踪滤波%无迹卡尔曼滤波%次优渐消因子%INS/GPS组合导航
彊跟蹤濾波%無跡卡爾曼濾波%次優漸消因子%INS/GPS組閤導航
강근종려파%무적잡이만려파%차우점소인자%INS/GPS조합도항
strong tracking filter%unscented Kalman filter%suboptimal fading factor%INS/GPS integrated navigation
针对标准 UKF 缺乏对系统状态异常的自适应调整能力,导致滤波精度降低的问题,提出一种改进的强跟踪UKF算法。该算法采用假设检验的方法对异常状态进行检测,当系统状态发生异常时,对预测协方差阵引入次优渐消因子自适应的调整滤波增益,实现对系统真实状态的强跟踪。该算法中次优渐消因子的确定无需计算系统模型的雅克比矩阵,提高了传统强跟踪 UKF 的实用性。将提出的算法应用于INS/GPS组合导航系统进行仿真验证,并与标准UKF进行比较,结果表明,在系统状态存在异常时,提出的带单重次优渐消因子的强跟踪UKF得到的东向、北向位置误差在[-13.7 m,14.9 m]以内,带多重次优渐消因子的强跟踪UKF得到的东向、北向位置误差在[-10.0 m,12.1 m]以内,滤波性能明显优于标准UKF,提高了组合导航系统的解算精度。
針對標準 UKF 缺乏對繫統狀態異常的自適應調整能力,導緻濾波精度降低的問題,提齣一種改進的彊跟蹤UKF算法。該算法採用假設檢驗的方法對異常狀態進行檢測,噹繫統狀態髮生異常時,對預測協方差陣引入次優漸消因子自適應的調整濾波增益,實現對繫統真實狀態的彊跟蹤。該算法中次優漸消因子的確定無需計算繫統模型的雅剋比矩陣,提高瞭傳統彊跟蹤 UKF 的實用性。將提齣的算法應用于INS/GPS組閤導航繫統進行倣真驗證,併與標準UKF進行比較,結果錶明,在繫統狀態存在異常時,提齣的帶單重次優漸消因子的彊跟蹤UKF得到的東嚮、北嚮位置誤差在[-13.7 m,14.9 m]以內,帶多重次優漸消因子的彊跟蹤UKF得到的東嚮、北嚮位置誤差在[-10.0 m,12.1 m]以內,濾波性能明顯優于標準UKF,提高瞭組閤導航繫統的解算精度。
침대표준 UKF 결핍대계통상태이상적자괄응조정능력,도치려파정도강저적문제,제출일충개진적강근종UKF산법。해산법채용가설검험적방법대이상상태진행검측,당계통상태발생이상시,대예측협방차진인입차우점소인자자괄응적조정려파증익,실현대계통진실상태적강근종。해산법중차우점소인자적학정무수계산계통모형적아극비구진,제고료전통강근종 UKF 적실용성。장제출적산법응용우INS/GPS조합도항계통진행방진험증,병여표준UKF진행비교,결과표명,재계통상태존재이상시,제출적대단중차우점소인자적강근종UKF득도적동향、북향위치오차재[-13.7 m,14.9 m]이내,대다중차우점소인자적강근종UKF득도적동향、북향위치오차재[-10.0 m,12.1 m]이내,려파성능명현우우표준UKF,제고료조합도항계통적해산정도。
The performance of the standard UKF would be degraded when the system states are abnormal due to the absence of capability to adapt itself to the changing conditions. This paper presents an improved strong tracking UKF (ISTUKF) to overcome the limitation of the standard UKF. The hypothesis testing method is employed in the ISTUKF to identify the abnormal system states, and in case they occur, the suboptimal fading factors are introduced into the prediction covariance to adaptively adjust the Kalman gain matrix to realize the strong tracking of the real state. Compared with the traditional strong tracking UKF, the proposed ISTUKF avoids the cumbersome evaluation of Jacobian matrices involved in the calculation of the suboptimal fading factors, making it more applicable. The proposed ISTUKF is applied to the INS/GPS integrated system for simulation in comparison with the standard UKF. The simulation results demonstrate that the position errors in east and north obtained by the ISTUKF with single suboptimal fading factor are within [-13.7 m, 14.9 m], and the corresponding errors obtained by the ISTUKF with multiple suboptimal fading factors are within [-10.0 m, 12.1 m]. The performance of the proposed ISTUKF is significantly superior to that of the standard UKF, leading to improved position precision.