岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
z1期
278-284
,共7页
王帅帅%高波%隋传毅%闻毓民
王帥帥%高波%隋傳毅%聞毓民
왕수수%고파%수전의%문육민
隧道洞口段%仰坡%衬砌%破坏形态%振动台试验
隧道洞口段%仰坡%襯砌%破壞形態%振動檯試驗
수도동구단%앙파%츤체%파배형태%진동태시험
entrance of tunnel%upward slope%linings%fracture characteristics%shaking table tests
针对洞口段均质围岩仰坡、含软弱夹层仰坡和桁架梁加固仰坡围岩3种工况,开展大型振动台模型试验,分析隧道洞口段仰坡模型土破坏形态。试验结果表明,均质边坡洞口段模型土在动力作用下坡肩土体先出现张拉裂缝,随着激振加速度增加,坡肩土体局部出现倾倒崩塌,最后沿坡面滑落堆积;含软弱夹层边坡在地震力作用下,仰坡坡脚部位土体挤压破碎,坡顶表面沿软弱夹层位置出现张拉裂缝,上覆土体沿软弱夹层滑动,最后土体大规模崩塌、滑落;洞口段加固边坡在动力作用下基本保持整体稳定,只部分梁格出现了局部的掉块,模型土顶部出现沿隧道轴向的细微裂缝。分析了隧道洞口段衬砌结构破坏形态,试验结果表明均质边坡洞口段 AB 两段衬砌模型裂缝分布较 CD 段复杂,认为洞口段地震影响深度为 AB 两段衬砌的长度,对应于实际工程中40 m;受软弱夹层影响,跨软弱夹层部衬砌模型裂缝形态较复杂;仰坡加固后,洞口段衬砌模型受力改善。研究结果可为山岭隧道洞口段边坡抗减震研究和设计提供参考。
針對洞口段均質圍巖仰坡、含軟弱夾層仰坡和桁架樑加固仰坡圍巖3種工況,開展大型振動檯模型試驗,分析隧道洞口段仰坡模型土破壞形態。試驗結果錶明,均質邊坡洞口段模型土在動力作用下坡肩土體先齣現張拉裂縫,隨著激振加速度增加,坡肩土體跼部齣現傾倒崩塌,最後沿坡麵滑落堆積;含軟弱夾層邊坡在地震力作用下,仰坡坡腳部位土體擠壓破碎,坡頂錶麵沿軟弱夾層位置齣現張拉裂縫,上覆土體沿軟弱夾層滑動,最後土體大規模崩塌、滑落;洞口段加固邊坡在動力作用下基本保持整體穩定,隻部分樑格齣現瞭跼部的掉塊,模型土頂部齣現沿隧道軸嚮的細微裂縫。分析瞭隧道洞口段襯砌結構破壞形態,試驗結果錶明均質邊坡洞口段 AB 兩段襯砌模型裂縫分佈較 CD 段複雜,認為洞口段地震影響深度為 AB 兩段襯砌的長度,對應于實際工程中40 m;受軟弱夾層影響,跨軟弱夾層部襯砌模型裂縫形態較複雜;仰坡加固後,洞口段襯砌模型受力改善。研究結果可為山嶺隧道洞口段邊坡抗減震研究和設計提供參攷。
침대동구단균질위암앙파、함연약협층앙파화항가량가고앙파위암3충공황,개전대형진동태모형시험,분석수도동구단앙파모형토파배형태。시험결과표명,균질변파동구단모형토재동력작용하파견토체선출현장랍렬봉,수착격진가속도증가,파견토체국부출현경도붕탑,최후연파면활락퇴적;함연약협층변파재지진력작용하,앙파파각부위토체제압파쇄,파정표면연연약협층위치출현장랍렬봉,상복토체연연약협층활동,최후토체대규모붕탑、활락;동구단가고변파재동력작용하기본보지정체은정,지부분량격출현료국부적도괴,모형토정부출현연수도축향적세미렬봉。분석료수도동구단츤체결구파배형태,시험결과표명균질변파동구단 AB 량단츤체모형렬봉분포교 CD 단복잡,인위동구단지진영향심도위 AB 량단츤체적장도,대응우실제공정중40 m;수연약협층영향,과연약협층부츤체모형렬봉형태교복잡;앙파가고후,동구단츤체모형수력개선。연구결과가위산령수도동구단변파항감진연구화설계제공삼고。
By consulting domestic seismic study on tunnel entrance, large scaled shaking table model tests of the entrance on homogeneous upward slope, slope with weak intercalation and strengthened slope were carried out in laboratory. General conclusions were obtained through analyzing the failure modes of the upward slopes. Under the earthquake, tension cracks appeared first at the shoulder of the slope, with the excitation acceleration increasing, soil at the shoulder started to dump and collapse; when introducing the weak intercalation, the soil at the toe of slope was squeezed broken firstly, tension cracks of the surface appeared at the weak interlayer positions, overlying soil sliding along the weak interlayer and leads to large-scaled soil collapse; the strengthened slope remained stable under the action of the force, only caused partial soil failure; minor axial cracks appeared at top. By analyzing the tunnel structure failure, the test results show that the fracture distribution on the A and B linings of tunnel portal are more complex than that on C and D linings; the total length can be taken as the earthquake affect length, which corresponds to 40m at the actual project. Affected by the weak interlayer, the fracture of the lining parts crossed the weak interlayer are more complex than others; the slope reinforcement can improve the stress state of both the slope and portal structure. These conclusions can be for reference in design and construction of tunnel under earth quake.