昭通学院学报
昭通學院學報
소통학원학보
Journal of ZhaoTong University
2014年
5期
1-5
,共5页
M-矩阵%Hadamard积%对角占优%双随机%最小特征值
M-矩陣%Hadamard積%對角佔優%雙隨機%最小特徵值
M-구진%Hadamard적%대각점우%쌍수궤%최소특정치
M-matrix%Hadamard product%diagonally dominant%doubly stochastic%smallest eigenvalue
根据非奇异 M-矩阵的特点和性质,对两个 M-矩阵的 Hadamard积的最小特征值下界进行新的估计,并给出q(B礋A-1)和q(A礋A-1)的估计式,同时得到了当A-1是双随机矩阵时,q(B礋A-1)的一个新估计式。经算例验证,这些估计式在某些情况下提高了现有估计式的估计精确度。
根據非奇異 M-矩陣的特點和性質,對兩箇 M-矩陣的 Hadamard積的最小特徵值下界進行新的估計,併給齣q(B礋A-1)和q(A礋A-1)的估計式,同時得到瞭噹A-1是雙隨機矩陣時,q(B礋A-1)的一箇新估計式。經算例驗證,這些估計式在某些情況下提高瞭現有估計式的估計精確度。
근거비기이 M-구진적특점화성질,대량개 M-구진적 Hadamard적적최소특정치하계진행신적고계,병급출q(B택A-1)화q(A택A-1)적고계식,동시득도료당A-1시쌍수궤구진시,q(B택A-1)적일개신고계식。경산례험증,저사고계식재모사정황하제고료현유고계식적고계정학도。
According to the characteristics and properties of nonsingular M-matrices ,for the Hadamard product of two M-matrices is further estamated ,and some new estimation formulas on lower bounds of q(B° A-1 ) and q(A° A-1 ) are given .When A-1 is a doubly stochastic matrix ,a new inequality q(B°A-1 )of is derived .The given numerical examples show that these inequalities improve several existing results in some cases .