高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2014年
11期
2451-2456
,共6页
魏林%王丽秀%陶占良%陈军
魏林%王麗秀%陶佔良%陳軍
위림%왕려수%도점량%진군
Sn-Al复合薄膜%共溅%三维网状结构%锂离子电池%负极
Sn-Al複閤薄膜%共濺%三維網狀結構%鋰離子電池%負極
Sn-Al복합박막%공천%삼유망상결구%리리자전지%부겁
Sn-Al composite thin film%Co-sputtering%3 D network structure%Li-ion battery%Anode
采用磁控溅射共溅法,在铜箔和泡沫铜基底上分别制备了平面和三维网状结构的Sn-Al/Cu复合薄膜。表征了其结构,并研究了其作为锂离子电池负极材料的电化学性能。结果表明,三维网状结构的电化学性能明显优于平面复合薄膜,表现出很好的循环性能和倍率性能:以600 mA/g电流密度充放电,三维网状结构的复合薄膜有较好的容量保持率,循环50周后容量保持在410 mA·h/g;以2000 mA/g电流密度充放电,再以500 mA/g电流密度进行充放电,三维网状结构的复合薄膜仍有464 mA·h/g的放电容量。三维网状结构的Sn-Al复合薄膜能抑制充放电时带来的体积膨胀,较大的表面积和粗糙表面可以使其与锂充分反应,改善其电化学性能。
採用磁控濺射共濺法,在銅箔和泡沫銅基底上分彆製備瞭平麵和三維網狀結構的Sn-Al/Cu複閤薄膜。錶徵瞭其結構,併研究瞭其作為鋰離子電池負極材料的電化學性能。結果錶明,三維網狀結構的電化學性能明顯優于平麵複閤薄膜,錶現齣很好的循環性能和倍率性能:以600 mA/g電流密度充放電,三維網狀結構的複閤薄膜有較好的容量保持率,循環50週後容量保持在410 mA·h/g;以2000 mA/g電流密度充放電,再以500 mA/g電流密度進行充放電,三維網狀結構的複閤薄膜仍有464 mA·h/g的放電容量。三維網狀結構的Sn-Al複閤薄膜能抑製充放電時帶來的體積膨脹,較大的錶麵積和粗糙錶麵可以使其與鋰充分反應,改善其電化學性能。
채용자공천사공천법,재동박화포말동기저상분별제비료평면화삼유망상결구적Sn-Al/Cu복합박막。표정료기결구,병연구료기작위리리자전지부겁재료적전화학성능。결과표명,삼유망상결구적전화학성능명현우우평면복합박막,표현출흔호적순배성능화배솔성능:이600 mA/g전류밀도충방전,삼유망상결구적복합박막유교호적용량보지솔,순배50주후용량보지재410 mA·h/g;이2000 mA/g전류밀도충방전,재이500 mA/g전류밀도진행충방전,삼유망상결구적복합박막잉유464 mA·h/g적방전용량。삼유망상결구적Sn-Al복합박막능억제충방전시대래적체적팽창,교대적표면적화조조표면가이사기여리충분반응,개선기전화학성능。
Sn-Al/Cu composite thin films with planar and three dimensional(3D) network structures, which were prepared by co-sputtering method on copper foil or foam, were used as the anode materials of Li-ion bat-teries. The phase structure and surface morphology of Sn-Al composite thin films were characterized by X-ray diffraction( XRD) and scanning electron microscopy( SEM) . The electrochemical performance of Sn-Al com-posite thin films was evaluated with charge/discharge and electrochemical impedance spectroscopy ( EIS ) at room temperature. The results showed that Sn-Al composite thin films with 3D network structure displayed a capacity of 410 mA·h/g after 50 cycles at a current density of 600 mA/g, and a capacity of 464 mA·h/g at a current density of 2000 mA/g. The improved electrochemical performance such as cycling stability and columbic efficiency is attributed to the 3D network structure, which can obviously restrain the volume change of Sn-Al composite thin film during the insertion/extraction process of lithium ion. In addition, copper foam with large specific surface area and rough surface can promote the reaction with lithium sufficiently.