高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2014年
11期
2416-2422
,共7页
李绍晨%于广涛%陈巍%黄旭日
李紹晨%于廣濤%陳巍%黃旭日
리소신%우엄도%진외%황욱일
碱金属原子%超短碳纳米管%一阶超极化率%电荷转移%额外电子%表面吸附%非线性光学性质
堿金屬原子%超短碳納米管%一階超極化率%電荷轉移%額外電子%錶麵吸附%非線性光學性質
감금속원자%초단탄납미관%일계초겁화솔%전하전이%액외전자%표면흡부%비선성광학성질
Alkali metal atom%Super-short carbon nanotube%First hyperpolarizability%Charge transfer%Excess electron%Surface-adsorption%Nonlinear optical property
采用密度泛函理论(DFT)方法系统研究了表面吸附碱金属 Li原子的超短碳纳米管([8]cyclophe-nacene)体系的结构和非线性光学性质.在这些体系中, Li原子均能稳定地吸附在超短碳纳米管表面,其吸附能高达84.0~106.2 kJ/mol.当吸附1~2个Li原子时, Li原子和碳纳米管之间发生了明显的电荷转移过程,使体系的一阶超极化率(β0)值明显改善,β0值从0迅速增加到3.42×103~8.29×103 a. u.;当吸附的Li原子数增加到3时,体系内部产生了额外电子,有效地降低了体系最主要跃迁的跃迁能,使体系的一阶超极化率进一步提升(高达2.59×106a. u.).此外, Li原子之间的距离也是影响吸附体系β0值的重要因素.
採用密度汎函理論(DFT)方法繫統研究瞭錶麵吸附堿金屬 Li原子的超短碳納米管([8]cyclophe-nacene)體繫的結構和非線性光學性質.在這些體繫中, Li原子均能穩定地吸附在超短碳納米管錶麵,其吸附能高達84.0~106.2 kJ/mol.噹吸附1~2箇Li原子時, Li原子和碳納米管之間髮生瞭明顯的電荷轉移過程,使體繫的一階超極化率(β0)值明顯改善,β0值從0迅速增加到3.42×103~8.29×103 a. u.;噹吸附的Li原子數增加到3時,體繫內部產生瞭額外電子,有效地降低瞭體繫最主要躍遷的躍遷能,使體繫的一階超極化率進一步提升(高達2.59×106a. u.).此外, Li原子之間的距離也是影響吸附體繫β0值的重要因素.
채용밀도범함이론(DFT)방법계통연구료표면흡부감금속 Li원자적초단탄납미관([8]cyclophe-nacene)체계적결구화비선성광학성질.재저사체계중, Li원자균능은정지흡부재초단탄납미관표면,기흡부능고체84.0~106.2 kJ/mol.당흡부1~2개Li원자시, Li원자화탄납미관지간발생료명현적전하전이과정,사체계적일계초겁화솔(β0)치명현개선,β0치종0신속증가도3.42×103~8.29×103 a. u.;당흡부적Li원자수증가도3시,체계내부산생료액외전자,유효지강저료체계최주요약천적약천능,사체계적일계초겁화솔진일보제승(고체2.59×106a. u.).차외, Li원자지간적거리야시영향흡부체계β0치적중요인소.
Under the density functional theory(DFT) method, the structures and nonlinear optical(NLO) properties of seven new Lin@cyclophenacene ( n=1-3 ) species were investigated in detail, where one to three Li atoms are adsorbed over the surface of the super-short carbon nanotube ( [ 8 ] cyclophenacene ) . In these systems, the Li atoms can be adsorbed stably on the nanotube, as revealed by their considerable adsorp-tion energies(84. 0-106. 2 kJ/mol) . Besides, when adsorbing one to two alkali Li atoms, the first hyperpo-larizability of the carbon nanotube can be effectively improved, where the β0 value can be significantly increased from zero to the range of 3. 42 ×103-8. 29 ×103 a. u. , owing to the occurrence of charge transfer process from the Li atom to the nanotube. Comparatively, when increasing the number of the adsorbed Li atoms to three, the β0 value can be further enhanced sharply, even to as large as 2. 59×106 a. u. , which can be attributed to the formation of the excess electron. Moreover, the distance between the adsorbed Li atoms can also play an important role in effecting the first hyperpolarizabilities of systems. This work can provide some new valuable insights for designing the new type of high-performance NLO materials based on the carbon nanotubes.