农业工程学报
農業工程學報
농업공정학보
2014年
21期
184-191
,共8页
郭熙%谢碧裕%叶英聪%谢文
郭熙%謝碧裕%葉英聰%謝文
곽희%사벽유%협영총%사문
光谱分析%土壤%算法%高光谱%潴育型麻沙泥田%潴育型潮沙泥田%江西省兴国县
光譜分析%土壤%算法%高光譜%潴育型痳沙泥田%潴育型潮沙泥田%江西省興國縣
광보분석%토양%산법%고광보%저육형마사니전%저육형조사니전%강서성흥국현
spectrum analysis%soils%algorithms%hyperspectral%hydromorphic alluvial sandy mud paddy%hydromorphic tide sandy mud paddy%Xingguo County of Jiangxi Province
为了快速识别和划分不同类型水稻土,该研究以江西省兴国县潴育型麻沙泥田和潴育型潮沙泥田为研究对象,以样点方差分析为基础,采用光谱重采样处理、包络线去除处理及光谱一阶微分变换3种光谱分析方法,提取有效的光谱吸收特征参数(spectral absorption feature parameter,SAFP),分析得出两土种有效光谱特征。结果表明:识别潴育型水稻土最有效的是波谷波长位置的共性参数,而区分两土种最有效的是波峰宽度、波谷宽度及波谷倾斜角特性参数。重采样光谱特征参数分析中最有效的是波峰宽度:麻沙泥田的波峰宽度为58 nm,而潮沙泥田为27 nm,麻沙泥田波形起点高,下滑速度比潮沙泥田更快,吸收宽度大;去包络线算法提取光谱吸收特征参数发现,辨别麻沙泥田与潮沙泥田最有效的是波谷宽度,前者在波长482 nm处波谷宽度为26 nm,后者在波长484 nm处波谷宽度为178 nm,潮沙泥田波谷宽度大了将近6倍,而且麻沙泥田波谷倾斜角比潮沙泥田更大,麻沙泥田趋于突变型,而潮沙泥田趋于平缓型;光谱一阶微分方法提取特征参数中区分两土种最有效的是波谷倾斜角:麻沙泥田与潮沙泥田在波段471 nm处分别为-0.00573°和0.00573°,前者相邻波谷走向为负向坡,而后者为正向坡。研究可为高光谱技术辨别不同水稻土类型提供参考。
為瞭快速識彆和劃分不同類型水稻土,該研究以江西省興國縣潴育型痳沙泥田和潴育型潮沙泥田為研究對象,以樣點方差分析為基礎,採用光譜重採樣處理、包絡線去除處理及光譜一階微分變換3種光譜分析方法,提取有效的光譜吸收特徵參數(spectral absorption feature parameter,SAFP),分析得齣兩土種有效光譜特徵。結果錶明:識彆潴育型水稻土最有效的是波穀波長位置的共性參數,而區分兩土種最有效的是波峰寬度、波穀寬度及波穀傾斜角特性參數。重採樣光譜特徵參數分析中最有效的是波峰寬度:痳沙泥田的波峰寬度為58 nm,而潮沙泥田為27 nm,痳沙泥田波形起點高,下滑速度比潮沙泥田更快,吸收寬度大;去包絡線算法提取光譜吸收特徵參數髮現,辨彆痳沙泥田與潮沙泥田最有效的是波穀寬度,前者在波長482 nm處波穀寬度為26 nm,後者在波長484 nm處波穀寬度為178 nm,潮沙泥田波穀寬度大瞭將近6倍,而且痳沙泥田波穀傾斜角比潮沙泥田更大,痳沙泥田趨于突變型,而潮沙泥田趨于平緩型;光譜一階微分方法提取特徵參數中區分兩土種最有效的是波穀傾斜角:痳沙泥田與潮沙泥田在波段471 nm處分彆為-0.00573°和0.00573°,前者相鄰波穀走嚮為負嚮坡,而後者為正嚮坡。研究可為高光譜技術辨彆不同水稻土類型提供參攷。
위료쾌속식별화화분불동류형수도토,해연구이강서성흥국현저육형마사니전화저육형조사니전위연구대상,이양점방차분석위기출,채용광보중채양처리、포락선거제처리급광보일계미분변환3충광보분석방법,제취유효적광보흡수특정삼수(spectral absorption feature parameter,SAFP),분석득출량토충유효광보특정。결과표명:식별저육형수도토최유효적시파곡파장위치적공성삼수,이구분량토충최유효적시파봉관도、파곡관도급파곡경사각특성삼수。중채양광보특정삼수분석중최유효적시파봉관도:마사니전적파봉관도위58 nm,이조사니전위27 nm,마사니전파형기점고,하활속도비조사니전경쾌,흡수관도대;거포락선산법제취광보흡수특정삼수발현,변별마사니전여조사니전최유효적시파곡관도,전자재파장482 nm처파곡관도위26 nm,후자재파장484 nm처파곡관도위178 nm,조사니전파곡관도대료장근6배,이차마사니전파곡경사각비조사니전경대,마사니전추우돌변형,이조사니전추우평완형;광보일계미분방법제취특정삼수중구분량토충최유효적시파곡경사각:마사니전여조사니전재파단471 nm처분별위-0.00573°화0.00573°,전자상린파곡주향위부향파,이후자위정향파。연구가위고광보기술변별불동수도토류형제공삼고。
The application of hyperspectral analysis techniques can extract hyperspectral characteristic parameters and identify soil types. In contrast to the traditional methods, this application is more convenient and time-saving. This paper took two types of Typic Hapli-Stagnic Anthrosols (the hydromorphic alluvial sandy mud paddy and the hydromorphic tide sandy mud paddy) in Xingguo County as the research objects to analyze the hyperspectal characteristics and to extract the effective hyperspectral absorption characteristic parameters (SAFP) for the two soils. In the research, we used three hyperspectral methods including the hyperspectral resample process, the continuum removal, and the first-order differential transform of hyperspectral reflectivity. The results showed that the wavelength position of peaks and valleys can be used to effectively identify the two different Anthrosols. The wave peak width, the wave valley width and the wave valley tilt angle were the parameters to distinguish the two types of Anthrosols. In addition, the analysis of the hyperspectral characteristics parameters after the hyperspectral resample process showed that the difference between the two types of soils was the wave peak reflectivity, and the wave peak reflectivity was the most effective parameter. The hydromorphic alluvial sandy mud paddy belonged to the high reflectivity mud type. The declining rate of the hydromorphic alluvial sandy mud paddy hyperspectral reflectivity was larger and the hyperspectral curve absorption width was significantly larger than that of the hydromorphic tide sandy mud paddy. Moreover, the analysis of the hyperspectral characteristics parameters after the continuum removal showed that the wave valley width can be used to distinguish the two types of Typic Hapli-Stagnic Anthrosols. The wave valley widths of the two soils were 26 and 178 nm, respectively in the vicinity of the wavelength 480 nm. Finally, the analysis of the hyperspectral characteristics parameters after the first-order differential transform of hyperspectral reflectivity showed that the wave valley tilt angle was the other effective parameter to distinguish the two types of Anthrosols. The wave valley tilt angle of the hydromorphic alluvial sandy mud paddy and the hydromorphic tide sandy mud paddy were-0.00573° and 0.00573°, respectively at the wavelength 471 nm. This showed that the hyperspectral reflectivity increase trend of the hydromorphic alluvial sandy mud paddy was negative in the vicinity of the wavelength 471 nm, while the hyperspectral reflectivity increase trend of the hydromorphic tide mud paddy was positive in the vicinity of the wavelength 471 nm. This paper can provide a reference for the application of hyperspectral analysis techniques to identify different Stagnic Anthrosols soil.