农业工程学报
農業工程學報
농업공정학보
2014年
21期
138-146
,共9页
王柳%熊伟%温小乐%冯灵芝
王柳%熊偉%溫小樂%馮靈芝
왕류%웅위%온소악%풍령지
气候变化%温度%降水%辐射%日较差%玉米%产量
氣候變化%溫度%降水%輻射%日較差%玉米%產量
기후변화%온도%강수%복사%일교차%옥미%산량
climate change%temperature%precipitation%radiation%diurnal temperature range%maize%yield
通过分析1981-2006年温度、降水、辐射各气象因子变化对中国玉米调查产量变化的影响,尝试剥离和评估各气象因子变化对中国玉米产量的影响。结果表明:1981-2006年玉米生育期内,中国绝大部分玉米种植区,日平均气温、日均最高温度、日均最低温度均表现为显著升高(全国尺度,平均每10年依次升高了0.39℃、0.37℃和0.40℃),日较差、降水和辐射则仅在部分地区表现出显著变化,且有增有减,因区域而表现不同。1981-2006年期间,中国玉米平均产量变化与生育期内平均温度变化,最高温度和最低温度变化之间,具有显著的线性负相关关系。部分地区的玉米产量变化还与日较差、辐射、降水变化存在显著线性相关关系。与基准年份1981年相比,米生育期内平均温度每上升1℃、日较差每下降1℃、辐射每下降10%和降雨总量每下降10%,对中国部分地区玉米产量影响显著。其中,生育期平均温度每上升1℃对玉米产量影响最大,相较其他因子而言,产量下降的区域(约25.1%)和变化幅度(平均约为-21.6%)都达到最大。1981-2006年,不同气候因子变化在各区域玉米产量的变化中作用有所差异,其中平均温度作为对产量影响的主导因子所占的区域比例最大(约为40%),其次是日较差(23%),而辐射和降水则比例相当,均接近20%。该研究为进一步开展气候变化对玉米产量的影响机制研究和政府部门进行气候变化条件下玉米产量预测、风险评估和制定相关应对措施提供参考。
通過分析1981-2006年溫度、降水、輻射各氣象因子變化對中國玉米調查產量變化的影響,嘗試剝離和評估各氣象因子變化對中國玉米產量的影響。結果錶明:1981-2006年玉米生育期內,中國絕大部分玉米種植區,日平均氣溫、日均最高溫度、日均最低溫度均錶現為顯著升高(全國呎度,平均每10年依次升高瞭0.39℃、0.37℃和0.40℃),日較差、降水和輻射則僅在部分地區錶現齣顯著變化,且有增有減,因區域而錶現不同。1981-2006年期間,中國玉米平均產量變化與生育期內平均溫度變化,最高溫度和最低溫度變化之間,具有顯著的線性負相關關繫。部分地區的玉米產量變化還與日較差、輻射、降水變化存在顯著線性相關關繫。與基準年份1981年相比,米生育期內平均溫度每上升1℃、日較差每下降1℃、輻射每下降10%和降雨總量每下降10%,對中國部分地區玉米產量影響顯著。其中,生育期平均溫度每上升1℃對玉米產量影響最大,相較其他因子而言,產量下降的區域(約25.1%)和變化幅度(平均約為-21.6%)都達到最大。1981-2006年,不同氣候因子變化在各區域玉米產量的變化中作用有所差異,其中平均溫度作為對產量影響的主導因子所佔的區域比例最大(約為40%),其次是日較差(23%),而輻射和降水則比例相噹,均接近20%。該研究為進一步開展氣候變化對玉米產量的影響機製研究和政府部門進行氣候變化條件下玉米產量預測、風險評估和製定相關應對措施提供參攷。
통과분석1981-2006년온도、강수、복사각기상인자변화대중국옥미조사산량변화적영향,상시박리화평고각기상인자변화대중국옥미산량적영향。결과표명:1981-2006년옥미생육기내,중국절대부분옥미충식구,일평균기온、일균최고온도、일균최저온도균표현위현저승고(전국척도,평균매10년의차승고료0.39℃、0.37℃화0.40℃),일교차、강수화복사칙부재부분지구표현출현저변화,차유증유감,인구역이표현불동。1981-2006년기간,중국옥미평균산량변화여생육기내평균온도변화,최고온도화최저온도변화지간,구유현저적선성부상관관계。부분지구적옥미산량변화환여일교차、복사、강수변화존재현저선성상관관계。여기준년빈1981년상비,미생육기내평균온도매상승1℃、일교차매하강1℃、복사매하강10%화강우총량매하강10%,대중국부분지구옥미산량영향현저。기중,생육기평균온도매상승1℃대옥미산량영향최대,상교기타인자이언,산량하강적구역(약25.1%)화변화폭도(평균약위-21.6%)도체도최대。1981-2006년,불동기후인자변화재각구역옥미산량적변화중작용유소차이,기중평균온도작위대산량영향적주도인자소점적구역비례최대(약위40%),기차시일교차(23%),이복사화강수칙비례상당,균접근20%。해연구위진일보개전기후변화대옥미산량적영향궤제연구화정부부문진행기후변화조건하옥미산량예측、풍험평고화제정상관응대조시제공삼고。
Impacts of climate change on agriculture has received wide concerns globally, yet a number of questions such as how past climate change affected the crop yields, which climatic variables were the main contributor for observed yield reduction remained unanswered to date, particularly in developing countries. Information about the climatic risks posed on crop growth, and yield responses to the specific climatic risks is prerequisite for understanding the underlying mechanisms of climate change impacts and devising appropriate adaptation strategies. This study first identified the changes of growing-season climatic variables (temperature, precipitation, and solar radiation) from 1982-2006 for China’s maize production. Using the relationships between changes in survey maize yield and climatic variables and their spatial variations, we investigated and untangled the impacts of different climatic variables on maize yield. Our analysis demonstrated that the growing-season temperatures, including daily maximum, minimum and mean temperatures, exhibited significant increase during 1981-2006, indicating the potential climatic risks for maize growth in China. Growing-season diurnal temperature range, precipitation and solar radiation also exhibited detectable changes, but limited to small parts of the maize area. During 1981-2006, there were significant negative correlations between national maize yield and temperatures (include mean, maximum, and minimum temperatures). Maize yield in some maize areas also exhibited linear correlation relationship to growing-season diurnal temperature range, solar radiation, and precipitation. With a 1℃ warming in growing-season temperature, 1℃ increase in diurnal temperature range, a 10% decrease in radiation and precipitation, much of the maize area showed detectable yield response to these changes. Maize experienced depressed yield to the 1℃ warming in growing-season temperature, denoting by roughly a quarter of China’s maize area exhibiting depressed yield and an estimated reduction of 25.1%across the regions that have detectable negative yield responses. The four climatic variables have diverse impacts on the maize yield in terms of the magnitude of yield change and the spatial variation of yield response. We identified the key climatic factor for observed maize yield change for all maize area. Temperature appeared as the first key climatic driver for maize yield change in over 40%maize area, while diurnal temperature range acted as a main player in 23%maize area. Radiation and precipitation shared a small and similar portion of maize area for playing as the key climatic variables for the yield response. We recognized the uncertainties in our study some of which came from reliability of data resource and the use of statistical method. However, this study provided first hand information on maize yield response to historical climatic risks, which advanced the understanding of underlying mechanism of climate change impacts on China’s maize production and assisted the projection of maize yield for future climate change.