作物学报
作物學報
작물학보
ACTA AGRONOMICA SINICA
2014年
11期
1964-1972
,共9页
金岩%吕艳艳%付三雄%戚存扣
金巖%呂豔豔%付三雄%慼存釦
금암%려염염%부삼웅%척존구
甘蓝型油菜%耐淹性%主基因+多基因%遗传分析
甘藍型油菜%耐淹性%主基因+多基因%遺傳分析
감람형유채%내엄성%주기인+다기인%유전분석
Brassica napus L.%Water-logging tolerance%Major gene plus polygene%Genetic model
长江中下游是中国油菜主产区,该地区油菜播栽期间雨水多,易产生湿害,造成产量下降。研究甘蓝型油菜苗期耐淹性的遗传规律,对选育耐淹性强油菜新品种,提高油菜产量意义重大。应用甘蓝型油菜品种WR-4(耐淹)和WR-5(不耐淹)杂交后代衍生的6个世代(P1、F1、P2、B1:2、B2:2、F2:3)群体为材料,全淹6 d后去水恢复生长,去水后第7天调查死苗率,以此为耐淹性指标,于2012和2013年对6个世代群体家系进行耐淹性鉴定。应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法对耐淹性进行遗传分析。结果表明,2个年度该家系群体苗期耐淹性的最适遗传模型分别是E-0和B-3,即2对加性-显性-上位性主基因+加性-显性-上位性多基因和2对加性主基因模型。由此可见,该家系群体甘蓝型油菜苗期耐淹性主要受2对主基因控制,主基因存在加性、显性和上位性效应。当有显性效应存在时(2012年),主基因显性效应值|ha|=0.3475,|hb|=0.0069,大于主基因加性效应值|da|=|db|=0.0036。B1:2、B2:2和F2:3群体的主基因遗传率(h2mg),2012年分别为36.25%、61.40%和61.84%,平均为53.16%;2013年分别为8.30%、30.48%和43.13%,平均为27.30%。2年平均环境变异占表型变异的59.77%。上述结果表明,甘蓝型油菜苗期耐淹性受2对主基因型控制,但环境对耐淹性状的表型影响较大。F2:3家系群体苗期耐淹性遗传率较高,因此育种上可在早期世代对耐淹性状进行选择。
長江中下遊是中國油菜主產區,該地區油菜播栽期間雨水多,易產生濕害,造成產量下降。研究甘藍型油菜苗期耐淹性的遺傳規律,對選育耐淹性彊油菜新品種,提高油菜產量意義重大。應用甘藍型油菜品種WR-4(耐淹)和WR-5(不耐淹)雜交後代衍生的6箇世代(P1、F1、P2、B1:2、B2:2、F2:3)群體為材料,全淹6 d後去水恢複生長,去水後第7天調查死苗率,以此為耐淹性指標,于2012和2013年對6箇世代群體傢繫進行耐淹性鑒定。應用植物數量性狀主基因+多基因混閤遺傳模型多世代聯閤分析方法對耐淹性進行遺傳分析。結果錶明,2箇年度該傢繫群體苗期耐淹性的最適遺傳模型分彆是E-0和B-3,即2對加性-顯性-上位性主基因+加性-顯性-上位性多基因和2對加性主基因模型。由此可見,該傢繫群體甘藍型油菜苗期耐淹性主要受2對主基因控製,主基因存在加性、顯性和上位性效應。噹有顯性效應存在時(2012年),主基因顯性效應值|ha|=0.3475,|hb|=0.0069,大于主基因加性效應值|da|=|db|=0.0036。B1:2、B2:2和F2:3群體的主基因遺傳率(h2mg),2012年分彆為36.25%、61.40%和61.84%,平均為53.16%;2013年分彆為8.30%、30.48%和43.13%,平均為27.30%。2年平均環境變異佔錶型變異的59.77%。上述結果錶明,甘藍型油菜苗期耐淹性受2對主基因型控製,但環境對耐淹性狀的錶型影響較大。F2:3傢繫群體苗期耐淹性遺傳率較高,因此育種上可在早期世代對耐淹性狀進行選擇。
장강중하유시중국유채주산구,해지구유채파재기간우수다,역산생습해,조성산량하강。연구감람형유채묘기내엄성적유전규률,대선육내엄성강유채신품충,제고유채산량의의중대。응용감람형유채품충WR-4(내엄)화WR-5(불내엄)잡교후대연생적6개세대(P1、F1、P2、B1:2、B2:2、F2:3)군체위재료,전엄6 d후거수회복생장,거수후제7천조사사묘솔,이차위내엄성지표,우2012화2013년대6개세대군체가계진행내엄성감정。응용식물수량성상주기인+다기인혼합유전모형다세대연합분석방법대내엄성진행유전분석。결과표명,2개년도해가계군체묘기내엄성적최괄유전모형분별시E-0화B-3,즉2대가성-현성-상위성주기인+가성-현성-상위성다기인화2대가성주기인모형。유차가견,해가계군체감람형유채묘기내엄성주요수2대주기인공제,주기인존재가성、현성화상위성효응。당유현성효응존재시(2012년),주기인현성효응치|ha|=0.3475,|hb|=0.0069,대우주기인가성효응치|da|=|db|=0.0036。B1:2、B2:2화F2:3군체적주기인유전솔(h2mg),2012년분별위36.25%、61.40%화61.84%,평균위53.16%;2013년분별위8.30%、30.48%화43.13%,평균위27.30%。2년평균배경변이점표형변이적59.77%。상술결과표명,감람형유채묘기내엄성수2대주기인형공제,단배경대내엄성상적표형영향교대。F2:3가계군체묘기내엄성유전솔교고,인차육충상가재조기세대대내엄성상진행선택。
The middle and lower reaches of Yangtze River is a main producing region of canola (Brassica napus L.) in China. However, canola in this region is subjected to water-logging during planting period to reduce yield. It is of importance to study the inheritance of water-logging tolerance for canola. In this paper a family lines population of six generations of P1, F1, P2, B1:2, B2:2, F2:3 derived from the cross of WR-4 (resistant)×WR-5 (non-resistant) was used to analyse genetic segregation by applying major gene plus polygene mixed inheritance model. The seedling mortality was recorded on the 7th day after logging-removing for plant recovery following six days full-submergence treatment of the seedlings in 2012 and 2013. The results showed that the seedling mortality was respectively fitted the genetic model of E-0 and B-3, i.e., two pairs of additive-dominant-epistatic major gene plus additive-dominant-epistatic polygene model and two pairs of additive major genes model. This result confirms that water-logging tolerance of seedling in this cross is controlled mainly by two major genes which expressed in the mode of additive-dominant-epistatic effects. While dominant effects expressed (2012) it gave a higher value of|ha|=0.3475,|hb|=0.0069 than the additive ef-fect of the major genes which was |da|=|db|=0.0036. In the populations of B1:2, B2:2, and F2:3, h2mg was 36.25%, 61.40%, and 61.84%, respectively, with an average of 53.16% in 2012, and 8.30%, 30.48%, and 43.13%, respectively, with an average of 27.30%in 2013. Variance from environment effects was 59.77%of the total phenotypic variance on an average in two years. A conclusion could be made that water-logging tolerance of seedling in B. napus is controlled by two major genes but heavily af-fected by environment. Since a higher value of h2mg was detected in F2:3 populations, selection in early generations might be an effective way for waterlogging tolerance breeding in B. napus.