电光与控制
電光與控製
전광여공제
ELECTRONICS OPTICS & CONTROL
2014年
11期
46-50
,共5页
再入飞行器%末端速度约束%攻击角度约束%滑模变结构导引律%落点偏差
再入飛行器%末耑速度約束%攻擊角度約束%滑模變結構導引律%落點偏差
재입비행기%말단속도약속%공격각도약속%활모변결구도인률%낙점편차
reentry vehicle%terminal velocity constraint%impact angle constraint%sliding mode guidance law%impact deviation
在考虑末端角度和末端速度约束的前提下,研究滑模变结构导引律在再入飞行器上的应用。推导满足末端角度约束的滑模变结构导引律,给出俯冲平面和转弯平面的导引方程,依据导引方程生成需要攻角、侧滑角制导指令。设计考虑末端速度要求后制导环节产生的附加攻角和侧滑角指令。需要制导指令和附加指令相加得到同时考虑落速和落角情况下的合成攻角、侧滑角指令。仿真表明,滑模导引律能稳定姿态且引导飞行器准确到达目标点。针对不同的运动速度情况,进行了落点偏差、末端速度和末端角度随速度的变化趋势分析,在末端角度控制上两种导引律表现相近,在末端速度和落点偏差上滑模导引律表现明显优于最优导引律,表明滑模变结构导引律针对移动目标具有鲁棒性。
在攷慮末耑角度和末耑速度約束的前提下,研究滑模變結構導引律在再入飛行器上的應用。推導滿足末耑角度約束的滑模變結構導引律,給齣俯遲平麵和轉彎平麵的導引方程,依據導引方程生成需要攻角、側滑角製導指令。設計攷慮末耑速度要求後製導環節產生的附加攻角和側滑角指令。需要製導指令和附加指令相加得到同時攷慮落速和落角情況下的閤成攻角、側滑角指令。倣真錶明,滑模導引律能穩定姿態且引導飛行器準確到達目標點。針對不同的運動速度情況,進行瞭落點偏差、末耑速度和末耑角度隨速度的變化趨勢分析,在末耑角度控製上兩種導引律錶現相近,在末耑速度和落點偏差上滑模導引律錶現明顯優于最優導引律,錶明滑模變結構導引律針對移動目標具有魯棒性。
재고필말단각도화말단속도약속적전제하,연구활모변결구도인률재재입비행기상적응용。추도만족말단각도약속적활모변결구도인률,급출부충평면화전만평면적도인방정,의거도인방정생성수요공각、측활각제도지령。설계고필말단속도요구후제도배절산생적부가공각화측활각지령。수요제도지령화부가지령상가득도동시고필락속화락각정황하적합성공각、측활각지령。방진표명,활모도인률능은정자태차인도비행기준학도체목표점。침대불동적운동속도정황,진행료낙점편차、말단속도화말단각도수속도적변화추세분석,재말단각도공제상량충도인률표현상근,재말단속도화낙점편차상활모도인률표현명현우우최우도인률,표명활모변결구도인률침대이동목표구유로봉성。
The sliding mode guidance law of the reentry phase of vehicle was studied considering terminal velocity and impact angle constraints.The sliding mode guidance law satisfying terminal angle was derived, the guidance equations were expressed in longitudinal and lateral plane respectively,and the needed guidance command of angle of attack and sideslip angle were generated.Guidance command of angle of attack and sideslip angle were obtained considering the terminal velocity and falling angle.The synthesized guidance command was the sum of needed guidance command and appended guidance command.Simulation results indicate that the attitude of vehicle is stable and the vehicle is guided to target precisely.The changes of impact point deviation,terminal velocity and impact angle with target velocity were analyzed.The result shows that:the sliding mode guidance law and the optimal guidance law have similar performance on impact angle control,but the former performs much better on terminal velocity and impact point deviation. Therefore,the sliding mode guidance law is robust to maneuvering target.