光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
10期
81-87
,共7页
徐秀敏%张玉钧%何莹%尤坤%王立明%周毅%高彦伟%刘建国
徐秀敏%張玉鈞%何瑩%尤坤%王立明%週毅%高彥偉%劉建國
서수민%장옥균%하형%우곤%왕립명%주의%고언위%류건국
TDLAS%FPGA%信号产生%信号采集
TDLAS%FPGA%信號產生%信號採集
TDLAS%FPGA%신호산생%신호채집
TDLAS%FPGA%signal generation%signal acquisition
可调谐半导体激光吸收光谱技术(TDLAS)具有高分辨率和高灵敏度等特性,目前广泛应用于痕量气体检测,便携式和可在线调试是其发展的趋势。由于FPGA具有速度快,体积小,结构简单,抗干扰能力强,可在线调试和并行等方面的明显优势,TDLAS 痕量气体检测系统结合 FPGA 技术具有良好的应用前景。本文主要研究信号产生、采集的FPGA实现。由开放光路的连续观测实验可知,信号产生精度高、频率可高达10 kHz而不失真,信号采集精度高,可靠稳定,优化传统的TDLAS痕量气体检测系统,表明信号产生、采集的FPGA实现可行,为TDLAS痕量气体检测系统基于FPGA的实现奠定基础。
可調諧半導體激光吸收光譜技術(TDLAS)具有高分辨率和高靈敏度等特性,目前廣汎應用于痕量氣體檢測,便攜式和可在線調試是其髮展的趨勢。由于FPGA具有速度快,體積小,結構簡單,抗榦擾能力彊,可在線調試和併行等方麵的明顯優勢,TDLAS 痕量氣體檢測繫統結閤 FPGA 技術具有良好的應用前景。本文主要研究信號產生、採集的FPGA實現。由開放光路的連續觀測實驗可知,信號產生精度高、頻率可高達10 kHz而不失真,信號採集精度高,可靠穩定,優化傳統的TDLAS痕量氣體檢測繫統,錶明信號產生、採集的FPGA實現可行,為TDLAS痕量氣體檢測繫統基于FPGA的實現奠定基礎。
가조해반도체격광흡수광보기술(TDLAS)구유고분변솔화고령민도등특성,목전엄범응용우흔량기체검측,편휴식화가재선조시시기발전적추세。유우FPGA구유속도쾌,체적소,결구간단,항간우능력강,가재선조시화병행등방면적명현우세,TDLAS 흔량기체검측계통결합 FPGA 기술구유량호적응용전경。본문주요연구신호산생、채집적FPGA실현。유개방광로적련속관측실험가지,신호산생정도고、빈솔가고체10 kHz이불실진,신호채집정도고,가고은정,우화전통적TDLAS흔량기체검측계통,표명신호산생、채집적FPGA실현가행,위TDLAS흔량기체검측계통기우FPGA적실현전정기출。
Tunable semiconductor laser absorption spectrum technology (TDLAS) has the characteristics such as high resolution and high sensitivity, currently widely used in trace gas detection, so portable and online debugging is the trend of its development. Because the FPGA has the obvious advantages of fast speed, small size, simple structure, strong anti-interference ability, online debugging, parallel and so on, combined with FPGA technology, TDLAS trace gas detection system will have a good application prospect. This paper mainly studies the signal generation and the signal acquisition based on FPGA. Continuous observation experiment in the open light path indicates that the signal is high precision and its frequency can be as high as 10 kHz without distortion, the acquisition is high precision, stable and reliable, optimizing the traditional TDLAS trace gas detection system. It can be seen that the FPGA implementation of signal generation and signal acquisition is feasible, which is an important step to the FPGA implementation of TDLAS trace gas detection system.