光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
10期
49-54
,共6页
李敏%沈为民%黄杰%王乐%王少雷%贺志华%佟飞
李敏%瀋為民%黃傑%王樂%王少雷%賀誌華%佟飛
리민%침위민%황걸%왕악%왕소뢰%하지화%동비
窄光束%COB光源%光学设计%复合抛物面%同步多曲面
窄光束%COB光源%光學設計%複閤拋物麵%同步多麯麵
착광속%COB광원%광학설계%복합포물면%동보다곡면
narrow beam%COB light source%optical design%compound parabolic concentrator%simultaneous multiple surface
针对集成光源难以实现小发光角的问题,提出了一种大功率COB光源实现窄光束的设计方法。根据COB光源的出射光分布以及预设的光分布范围选用折射-折射(RR)系统。以选定的COB光源的光谱分布及配光曲线为标准建立光源模型,由复合抛物面(CPC)实现朗伯光源60°的聚光之后,再利用光学扩展量守恒以及同步多曲面方法(SMS)求得透镜前后两个曲面轮廓上点的坐标,进行曲线拟合获得轮廓曲线,进而得到透镜的三维模型。采用光学仿真软件对系统进行光线追迹,结果表明:系统在出光口处的发散角控制在30°之内,半光强度角为11.336°,整体光效达到89.398%,效果良好。
針對集成光源難以實現小髮光角的問題,提齣瞭一種大功率COB光源實現窄光束的設計方法。根據COB光源的齣射光分佈以及預設的光分佈範圍選用摺射-摺射(RR)繫統。以選定的COB光源的光譜分佈及配光麯線為標準建立光源模型,由複閤拋物麵(CPC)實現朗伯光源60°的聚光之後,再利用光學擴展量守恆以及同步多麯麵方法(SMS)求得透鏡前後兩箇麯麵輪廓上點的坐標,進行麯線擬閤穫得輪廓麯線,進而得到透鏡的三維模型。採用光學倣真軟件對繫統進行光線追跡,結果錶明:繫統在齣光口處的髮散角控製在30°之內,半光彊度角為11.336°,整體光效達到89.398%,效果良好。
침대집성광원난이실현소발광각적문제,제출료일충대공솔COB광원실현착광속적설계방법。근거COB광원적출사광분포이급예설적광분포범위선용절사-절사(RR)계통。이선정적COB광원적광보분포급배광곡선위표준건립광원모형,유복합포물면(CPC)실현랑백광원60°적취광지후,재이용광학확전량수항이급동보다곡면방법(SMS)구득투경전후량개곡면륜곽상점적좌표,진행곡선의합획득륜곽곡선,진이득도투경적삼유모형。채용광학방진연건대계통진행광선추적,결과표명:계통재출광구처적발산각공제재30°지내,반광강도각위11.336°,정체광효체도89.398%,효과량호。
For integrated light source cannot be easily realized with small emitting angle, a method of designing narrow beam for high-power COB light source is proposed. According to light distribution of the source and the desired light distribution of emergent rays, an optical system with Refraction-refraction(R-R) was chosen. The source model was established based on spectral distribution and relative intensity of the chosen COB light source, and then the divergence angle of a Lambertian source was reduced to 60° by using the Compound Parabolic Concentrator(CPC). Points on profile curves of the front surface and the behind surface of the lens were obtained with the extended conservation law and the Simultaneous Multiple Surface (SMS). Profile curves were obtained by curve fitting with these points, and then the lens model was established with three-dimensional software. The optical system was simulated with ray-tracing software. The results show that the divergence angle of the system is controlled within 30° in the optical port, the angle of the half of light intensity is 11.336°, and the total luminous efficiency is up to 89.398%.