电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2014年
7期
1320-1326
,共7页
特征选择%异质数据%多目标优化%微粒群优化%高斯采样
特徵選擇%異質數據%多目標優化%微粒群優化%高斯採樣
특정선택%이질수거%다목표우화%미립군우화%고사채양
feature selection%heterogeneous data%multi-objective optimization%particle swarm optimization%Gaussian sam-pling
环境和测量仪器精度的影响,使得采样数据的不同特征具有不同的质量。对这类异质数据进行特征选择,需要同时考虑特征子集确定分类器的准确度和可靠性,从而增加了特征选择的难度。本文研究异质数据的特征选择问题,提出一种基于多目标微粒群优化的特征选择方法。该方法首先以特征选择的概率为决策变量,将具有离散变量的特征选择问题,转化为连续变量多目标优化问题;然后,采用微粒群优化求解时,基于高斯采样,产生微粒的全局引导者,以提高 Pareto 解集的分布性;最后,依据储备集中元素更新的速度,确定需要扰动的微粒,以帮助微粒群跳出局部最优。将所提方法应用于多个典型数据集分类问题,实验结果表明了所提方法的有效性。
環境和測量儀器精度的影響,使得採樣數據的不同特徵具有不同的質量。對這類異質數據進行特徵選擇,需要同時攷慮特徵子集確定分類器的準確度和可靠性,從而增加瞭特徵選擇的難度。本文研究異質數據的特徵選擇問題,提齣一種基于多目標微粒群優化的特徵選擇方法。該方法首先以特徵選擇的概率為決策變量,將具有離散變量的特徵選擇問題,轉化為連續變量多目標優化問題;然後,採用微粒群優化求解時,基于高斯採樣,產生微粒的全跼引導者,以提高 Pareto 解集的分佈性;最後,依據儲備集中元素更新的速度,確定需要擾動的微粒,以幫助微粒群跳齣跼部最優。將所提方法應用于多箇典型數據集分類問題,實驗結果錶明瞭所提方法的有效性。
배경화측량의기정도적영향,사득채양수거적불동특정구유불동적질량。대저류이질수거진행특정선택,수요동시고필특정자집학정분류기적준학도화가고성,종이증가료특정선택적난도。본문연구이질수거적특정선택문제,제출일충기우다목표미립군우화적특정선택방법。해방법수선이특정선택적개솔위결책변량,장구유리산변량적특정선택문제,전화위련속변량다목표우화문제;연후,채용미립군우화구해시,기우고사채양,산생미립적전국인도자,이제고 Pareto 해집적분포성;최후,의거저비집중원소경신적속도,학정수요우동적미립,이방조미립군도출국부최우。장소제방법응용우다개전형수거집분류문제,실험결과표명료소제방법적유효성。
Different features of a sampling datum have different quality as a result the influence of the environment and the equipment precision .For the feature selection of this kind of heterogeneous data ,both the accuracy and the reliability of the classifier determined by a feature subset are required to simultaneously consider ,which enhances the difficulty of selecting features .The prob-lem of the feature selection of heterogeneous data is focused on in this paper ,and a method of selecting features is presented based on multi-objective particle swarm optimization .In this method ,the above problem is first converted to a multi-objective optimization problem by regarding the probability of selecting a feature as the decision variable .When particle swarm optimization (PSO) is em-ployed to solve the converted problem ,the global guider of particles is generated by Gaussian sampling so as to improve the perfor -mance of Pareto solutions in distribution .In addition ,the particle to be disturbed is determined according to the speed of updating a particle in the archive to help the swarm jump out of local optima .The proposed method is applied to classify several benchmark da-ta sets ,and the experimental results demonstrate its effectiveness .