气象
氣象
기상
METEOROLOGICAL MONTHLY
2014年
10期
1248-1258
,共11页
龙清怡%刘海文%顾建峰%张亚萍%翟丹华%杨春
龍清怡%劉海文%顧建峰%張亞萍%翟丹華%楊春
룡청이%류해문%고건봉%장아평%적단화%양춘
多普勒天气雷达%中尺度数值预报%相关分析%临近预报%融合
多普勒天氣雷達%中呎度數值預報%相關分析%臨近預報%融閤
다보륵천기뢰체%중척도수치예보%상관분석%림근예보%융합
Doppler weather radar data%mesoscale numerical weather prediction%correlation analysis%nowcasting%blending
提通过融合多普勒天气雷达资料与中尺度数值预报产品,发展了一种便于临近预报业务使用的方法。该方法首先通过相关分析计算当前相同时刻雷达估测降水与中尺度数值预报的反射率因子估测降水之间的位置偏差,导出一个位移偏差矢量场;然后,利用人机交互的方式对矢量场进行分区,并对各分区的矢量场进行平滑处理,计算出各分区的平均位移偏差矢量;最后,采用最小二乘法对各分区连续多次的平均位移偏差矢量进行线性拟合,得到各分区平均位移偏差矢量随时间的变化特征,订正未来时段相应区域的数值预报反射率因子估测降水的位置偏差。利用该方法对2012和2013年夏季发生在重庆西部、四川东部的3次强降水天气过程进行临近预报试验并对预报结果进行了检验,结果表明:对0~2 h 的临近预报,融合预报效果总体上优于模式预报效果;另外,与雷达外推定量降水预报相比,0~1 h 雷达外推预报效果优于融合预报效果,1~2 h融合预报效果优于雷达外推预报效果。
提通過融閤多普勒天氣雷達資料與中呎度數值預報產品,髮展瞭一種便于臨近預報業務使用的方法。該方法首先通過相關分析計算噹前相同時刻雷達估測降水與中呎度數值預報的反射率因子估測降水之間的位置偏差,導齣一箇位移偏差矢量場;然後,利用人機交互的方式對矢量場進行分區,併對各分區的矢量場進行平滑處理,計算齣各分區的平均位移偏差矢量;最後,採用最小二乘法對各分區連續多次的平均位移偏差矢量進行線性擬閤,得到各分區平均位移偏差矢量隨時間的變化特徵,訂正未來時段相應區域的數值預報反射率因子估測降水的位置偏差。利用該方法對2012和2013年夏季髮生在重慶西部、四川東部的3次彊降水天氣過程進行臨近預報試驗併對預報結果進行瞭檢驗,結果錶明:對0~2 h 的臨近預報,融閤預報效果總體上優于模式預報效果;另外,與雷達外推定量降水預報相比,0~1 h 雷達外推預報效果優于融閤預報效果,1~2 h融閤預報效果優于雷達外推預報效果。
제통과융합다보륵천기뢰체자료여중척도수치예보산품,발전료일충편우림근예보업무사용적방법。해방법수선통과상관분석계산당전상동시각뢰체고측강수여중척도수치예보적반사솔인자고측강수지간적위치편차,도출일개위이편차시량장;연후,이용인궤교호적방식대시량장진행분구,병대각분구적시량장진행평활처리,계산출각분구적평균위이편차시량;최후,채용최소이승법대각분구련속다차적평균위이편차시량진행선성의합,득도각분구평균위이편차시량수시간적변화특정,정정미래시단상응구역적수치예보반사솔인자고측강수적위치편차。이용해방법대2012화2013년하계발생재중경서부、사천동부적3차강강수천기과정진행림근예보시험병대예보결과진행료검험,결과표명:대0~2 h 적림근예보,융합예보효과총체상우우모식예보효과;령외,여뢰체외추정량강수예보상비,0~1 h 뢰체외추예보효과우우융합예보효과,1~2 h융합예보효과우우뢰체외추예보효과。
A nowcasting method based on blending Doppler weather radar data and mesoscale numerical weather prediction (NWP)model products is presented.The method is as follows:Firstly,by using cor-relation analysis,position errors are calculated between radar precipitation estimate and precipitation esti-mated from reflectivity factor from the output of NWP model in this same time,and thus displacement de-viation vectors fields are obtained.Then,displacement deviation vector fields are partitioned with human-computer interaction and each deviation vector field gets smoothed,so the average displacement deviation <br> vector of each partition is obtained.Finally,the trend variation characteristic of average displacement devi-ation vector of each partition with time is established by using least square method to linearly fit the con-tinuous time multiple average displacement deviation vectors for each partition,and according to the trend, spatial position deviation of precipitation estimated from reflectivity factor from the output of NWP model is corrected in the future periods.The method was once applied to three severe prceipitation cases in the summers of 2012 and 2013 that happened in the west of Chongqing and the east of Sichuan.The nowcast-ing verification results show that for the 0-2 h nowcasting,the performance of blending forecasts is gen-erally superior to model forecasts.Compared with quantitative precipitation forecast (QPF)of radar-based extrapolation,the performance of radar-based extrapolation QPF is superior to blending forecasts in the first hour but the performance of blending forecasts is superior to radar-based extrapolation QPF in the second hour.