电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2014年
11期
2972-2977
,共6页
魏大钧%张承慧%孙波%崔纳新
魏大鈞%張承慧%孫波%崔納新
위대균%장승혜%손파%최납신
电动汽车-电网互动%充放电调度%分时电价%多目标优化%交叉遗传粒子群算法
電動汽車-電網互動%充放電調度%分時電價%多目標優化%交扠遺傳粒子群算法
전동기차-전망호동%충방전조도%분시전개%다목표우화%교차유전입자군산법
vehicle-to-grid%charging and discharging dispatching%time-of-use price%multi-objective optimization%cross inheritance particle swarm optimization
大规模电动汽车无序充电易造成电网负荷“峰上加峰”等后果,这严重影响电网安全运行,因此合理调度充电行为至关重要。基于分时电价制度和电动汽车可入网的情况,针对电动汽车调度机构建立了计及电网负荷波动及用户成本的多目标优化模型,采用交叉遗传粒子群算法求解得到次日优化充放电计划。基于某商用楼宇负荷数据进行算例仿真,对比分析了分时电价与固定电价下的仿真结果及不同分时电价对调度策略的影响,结果表明:分时电价引导下的调度策略在减小电网峰谷差与提高用户经济性上都具有更大优势;受峰谷电价差增大与尖峰电价的影响,新的分时电价下电网调峰效果更加明显,但用户成本却因平均电价上浮而增高。
大規模電動汽車無序充電易造成電網負荷“峰上加峰”等後果,這嚴重影響電網安全運行,因此閤理調度充電行為至關重要。基于分時電價製度和電動汽車可入網的情況,針對電動汽車調度機構建立瞭計及電網負荷波動及用戶成本的多目標優化模型,採用交扠遺傳粒子群算法求解得到次日優化充放電計劃。基于某商用樓宇負荷數據進行算例倣真,對比分析瞭分時電價與固定電價下的倣真結果及不同分時電價對調度策略的影響,結果錶明:分時電價引導下的調度策略在減小電網峰穀差與提高用戶經濟性上都具有更大優勢;受峰穀電價差增大與尖峰電價的影響,新的分時電價下電網調峰效果更加明顯,但用戶成本卻因平均電價上浮而增高。
대규모전동기차무서충전역조성전망부하“봉상가봉”등후과,저엄중영향전망안전운행,인차합리조도충전행위지관중요。기우분시전개제도화전동기차가입망적정황,침대전동기차조도궤구건립료계급전망부하파동급용호성본적다목표우화모형,채용교차유전입자군산법구해득도차일우화충방전계화。기우모상용루우부하수거진행산례방진,대비분석료분시전개여고정전개하적방진결과급불동분시전개대조도책략적영향,결과표명:분시전개인도하적조도책략재감소전망봉곡차여제고용호경제성상도구유경대우세;수봉곡전개차증대여첨봉전개적영향,신적분시전개하전망조봉효과경가명현,단용호성본각인평균전개상부이증고。
The out-of-order charging of electric vehicles (EV) more likely cause the much higher peak load that seriously affects the secure operation of power grid, so it is of crucial importance to reasonably dispatch the behavior of EV charging. Based on the time-of-use (TOU) price mechanism and vehicle-to-grid (V2G) mode, a multi-objective optimization model for EV dispatching department, in which the load fluctuation in power grid and the user cost are taken into account, is established, this model is solved by cross inheritance particle swarm optimization to obtain the optimized charging and discharging scheduling for the next day. Taking the load data of a certain business building as the case, the simulation results under TOU price and that under fixed electricity price as well as the influences of different TOU price on scheduling strategy are contrasted and analyzed. Analysis results show that the TOU price-guided scheduling strategy possesses greater superiority in reducing the valley-to-peak difference of power grid and improving user’s economy;due to the influences of increased valley-to-peak difference and peak load price, the effect of peak load regulation under new TOU price will be more obvious, however the user cost will be increased due to the rising of average electricity price.