机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
20期
122-128
,共7页
兰凤崇%赖番结%陈吉清%马芳武
蘭鳳崇%賴番結%陳吉清%馬芳武
란봉숭%뢰번결%진길청%마방무
车身结构%动态性能%综合目标%权重系数%拓扑优化
車身結構%動態性能%綜閤目標%權重繫數%拓撲優化
차신결구%동태성능%종합목표%권중계수%탁복우화
body structure%dynamic performance%comprehensive objective%weight ratio%topology optimization
由于车身结构在汽车行驶过程中主要是保证其静动态承载性能,因此在概念设计阶段考虑其多种承载工况,特别是车身的动态性能要求来确定车身结构的最佳拓扑形式十分重要。结合整车多工况多体动力学分析,运用折衷规划法定义整车实际行驶工况下车身结构静态刚度和动态振动频率最大化的综合目标函数,通过层次分析法确定各工况的最优权重系数,进行车身结构的综合目标优化设计。以方程式赛车的车身结构设计为例,进行综合目标的拓扑优化设计,结果表明该方法进行车身结构的概念设计可行且有效。同时,经对比根据设计经验和基于正交试验定义权重系数的两种方法得出的优化结果,其车身的刚度和前6阶频率均有不同程度的提高,且结构更加合理,同时提高了计算效率。
由于車身結構在汽車行駛過程中主要是保證其靜動態承載性能,因此在概唸設計階段攷慮其多種承載工況,特彆是車身的動態性能要求來確定車身結構的最佳拓撲形式十分重要。結閤整車多工況多體動力學分析,運用摺衷規劃法定義整車實際行駛工況下車身結構靜態剛度和動態振動頻率最大化的綜閤目標函數,通過層次分析法確定各工況的最優權重繫數,進行車身結構的綜閤目標優化設計。以方程式賽車的車身結構設計為例,進行綜閤目標的拓撲優化設計,結果錶明該方法進行車身結構的概唸設計可行且有效。同時,經對比根據設計經驗和基于正交試驗定義權重繫數的兩種方法得齣的優化結果,其車身的剛度和前6階頻率均有不同程度的提高,且結構更加閤理,同時提高瞭計算效率。
유우차신결구재기차행사과정중주요시보증기정동태승재성능,인차재개념설계계단고필기다충승재공황,특별시차신적동태성능요구래학정차신결구적최가탁복형식십분중요。결합정차다공황다체동역학분석,운용절충규화법정의정차실제행사공황하차신결구정태강도화동태진동빈솔최대화적종합목표함수,통과층차분석법학정각공황적최우권중계수,진행차신결구적종합목표우화설계。이방정식새차적차신결구설계위례,진행종합목표적탁복우화설계,결과표명해방법진행차신결구적개념설계가행차유효。동시,경대비근거설계경험화기우정교시험정의권중계수적량충방법득출적우화결과,기차신적강도화전6계빈솔균유불동정도적제고,차결구경가합리,동시제고료계산효솔。
As the body structure is supposed to guarantee its static and dynamic bearing capacities, so it is very importance to determine the optimal topological body structure to consider a variety of loading case and the requirement of dynamic performance in the conceptual design phase. Combining analysis of multi-body dynamics with multiple loading conditions, a comprehensive objective function maximizing the static stiffness under multi-conditions and dynamic frequency of vibration is defined using the compromise programming approach, and comprehensive objective topology optimization is conducted. Meanwhile, the analytical hierarchy process(AHP) method is applied to obtain the weights of the body stiffness in various load conditions. The instance of the topology optimization results of a formula racing car body structure shows that this method is feasible and effective when it is applied to determine an advanced conceptual body structure. Moreover, the contrastive study is carried out to compare the comprehensive objective optimization approach proposed in this study to those that determine the weight ratio empirically or by orthogonal experiment. The study result shows that the body structure stiffness and the first six frequencies are increased and the structure is more reasonable, while the computational efficiency is improved.