机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
20期
77-83
,共7页
郑战光%谢昌吉%孙腾%袁帅
鄭戰光%謝昌吉%孫騰%袁帥
정전광%사창길%손등%원수
超细晶材料%积分算法%混合硬化%晶粒尺寸%应变率
超細晶材料%積分算法%混閤硬化%晶粒呎吋%應變率
초세정재료%적분산법%혼합경화%정립척촌%응변솔
ultrafine-grain material%integral algorithm%mixed hardening%grain size%strain rate
针对超细晶材料强度高、塑性能力不佳以及饱和应力跟晶粒尺寸和应变率等因素有关的特点,在Johnson-Cook模型的基础上引入Hall-Petch关系式,再与Armstrong-Frederick非线性随动硬化规律进行叠加,提出一种同时包含各向同性硬化和非线性随动硬化的混合硬化模型。该数学模型不仅考虑了超细晶材料的尺寸效应,还计及了加工硬化和包辛格效应的组合效应。在推导出该混合硬化模型的积分算法的基础上进行有限元数值分析和试验数据的对比分析。对比结果表明,不同晶粒大小与不同应变率下的超细晶材料的数值仿真结果与试验数据均吻合较好,进而证明该数学模型的合理性。因此,该混合硬化模型不仅丰富了塑性力学的内容,也可为超细晶材料的结构件设计提供一定的理论依据。
針對超細晶材料彊度高、塑性能力不佳以及飽和應力跟晶粒呎吋和應變率等因素有關的特點,在Johnson-Cook模型的基礎上引入Hall-Petch關繫式,再與Armstrong-Frederick非線性隨動硬化規律進行疊加,提齣一種同時包含各嚮同性硬化和非線性隨動硬化的混閤硬化模型。該數學模型不僅攷慮瞭超細晶材料的呎吋效應,還計及瞭加工硬化和包辛格效應的組閤效應。在推導齣該混閤硬化模型的積分算法的基礎上進行有限元數值分析和試驗數據的對比分析。對比結果錶明,不同晶粒大小與不同應變率下的超細晶材料的數值倣真結果與試驗數據均吻閤較好,進而證明該數學模型的閤理性。因此,該混閤硬化模型不僅豐富瞭塑性力學的內容,也可為超細晶材料的結構件設計提供一定的理論依據。
침대초세정재료강도고、소성능력불가이급포화응력근정립척촌화응변솔등인소유관적특점,재Johnson-Cook모형적기출상인입Hall-Petch관계식,재여Armstrong-Frederick비선성수동경화규률진행첩가,제출일충동시포함각향동성경화화비선성수동경화적혼합경화모형。해수학모형불부고필료초세정재료적척촌효응,환계급료가공경화화포신격효응적조합효응。재추도출해혼합경화모형적적분산법적기출상진행유한원수치분석화시험수거적대비분석。대비결과표명,불동정립대소여불동응변솔하적초세정재료적수치방진결과여시험수거균문합교호,진이증명해수학모형적합이성。인차,해혼합경화모형불부봉부료소성역학적내용,야가위초세정재료적결구건설계제공일정적이론의거。
Although the strength of ultrafine-grained materials is very good, their plastic behaviour is poor. Besides, their saturation stress relates to the grain size and the strain rate. According to the above properties, based on the Johnson-Cook model which incorporates Hall-Petch relation and then combines with Armstrong-Frederick type nonlinear kinematic hardening rule, a mixed hardening constitutive equation containing isotropic hardening rule and nonlinear kinematic hardening is put forward. The mixed hardening constitutive equation considers the size effect of ultrafine-grained materials as well as the combination of work hardening effect and Bauschinger effect. After the integral algorithm of the mixed hardening constitutive equation is deduced, the analysis of numerical simulation and comparison between the numerical results and the experimental data are performed finally. The comparison result shows that the numerical simulation results are agree well with the experimental data. Hence, it is proved that the mixed hardening constitution equation is rational. Therefore, the mixed hardening constitution equation does not only rich the theory of plasticity, but also provides a certain theoretical foundation for ultrafine-grained structural components design.