机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
20期
8-17
,共10页
马书义%武湛君%刘科海%王奕首
馬書義%武湛君%劉科海%王奕首
마서의%무담군%류과해%왕혁수
管道%导波检测%频散特性%频率选择
管道%導波檢測%頻散特性%頻率選擇
관도%도파검측%빈산특성%빈솔선택
pipes%guided waves inspection%dispersion characteristic%frequency selection
频散是长距离管道导波检测中影响检测频率选择的重要因素。通过分析空心圆管中纵向模态导波的频散特性,探讨导波检测常用模态L(0,2)和L(0,1)的频率选择问题。根据导波频散现象,建立缺陷回波分辨距离与激励信号参数间的量化关系,分析检测频率优化选择问题。以导波频散引起的信号分辨距离为依据,计算不同几何尺寸管道中L(0,2)和L(0,1)导波非频散段的限制频率。结果表明,限定或最小化缺陷回波分辨距离,可获得最佳的导波激励信号周期及检测频率或频段。随着管道几何尺寸变化,得到L(0,2)和L(0,1)导波频散特性变化的几个重要结论。当管道内径壁厚比不小于4时,L(0,2)导波低限频率与管道直径的乘积约为4.0 MHz·mm,高限频率与壁厚的乘积约为1.06 MHz·mm。对于小口径管中的L(0,1)导波,其高限频率与直径的乘积约为0.81 MHz·mm。这些简单的函数关系为管道检测时快速确定非频散段频率范围提供参考。
頻散是長距離管道導波檢測中影響檢測頻率選擇的重要因素。通過分析空心圓管中縱嚮模態導波的頻散特性,探討導波檢測常用模態L(0,2)和L(0,1)的頻率選擇問題。根據導波頻散現象,建立缺陷迴波分辨距離與激勵信號參數間的量化關繫,分析檢測頻率優化選擇問題。以導波頻散引起的信號分辨距離為依據,計算不同幾何呎吋管道中L(0,2)和L(0,1)導波非頻散段的限製頻率。結果錶明,限定或最小化缺陷迴波分辨距離,可穫得最佳的導波激勵信號週期及檢測頻率或頻段。隨著管道幾何呎吋變化,得到L(0,2)和L(0,1)導波頻散特性變化的幾箇重要結論。噹管道內徑壁厚比不小于4時,L(0,2)導波低限頻率與管道直徑的乘積約為4.0 MHz·mm,高限頻率與壁厚的乘積約為1.06 MHz·mm。對于小口徑管中的L(0,1)導波,其高限頻率與直徑的乘積約為0.81 MHz·mm。這些簡單的函數關繫為管道檢測時快速確定非頻散段頻率範圍提供參攷。
빈산시장거리관도도파검측중영향검측빈솔선택적중요인소。통과분석공심원관중종향모태도파적빈산특성,탐토도파검측상용모태L(0,2)화L(0,1)적빈솔선택문제。근거도파빈산현상,건립결함회파분변거리여격려신호삼수간적양화관계,분석검측빈솔우화선택문제。이도파빈산인기적신호분변거리위의거,계산불동궤하척촌관도중L(0,2)화L(0,1)도파비빈산단적한제빈솔。결과표명,한정혹최소화결함회파분변거리,가획득최가적도파격려신호주기급검측빈솔혹빈단。수착관도궤하척촌변화,득도L(0,2)화L(0,1)도파빈산특성변화적궤개중요결론。당관도내경벽후비불소우4시,L(0,2)도파저한빈솔여관도직경적승적약위4.0 MHz·mm,고한빈솔여벽후적승적약위1.06 MHz·mm。대우소구경관중적L(0,1)도파,기고한빈솔여직경적승적약위0.81 MHz·mm。저사간단적함수관계위관도검측시쾌속학정비빈산단빈솔범위제공삼고。
The dispersion of guided waves is an important factor that affects the frequency selection in long range pipe inspection. By analyzing the dispersion characteristics of longitudinal guided waves in hollow cylinders, the selection of inspection frequencies for the commonly used modes L(0,2) and L(0,1) is studied. According to the dispersion phenomenon, the quantitative relationship between defect echo resolvable distance and excitation signal parameters is established, and then the problem of frequency optimization selection is analyzed. A distance parameter caused by dispersion of guided waves is defined, and basis on this, the limiting frequencies of L(0,2) and L(0,1) modes in non-dispersive region are calculated. It is shown that the optimized cycles of tone burst and frequencies can be selected by restricting and minimizing the defect echo resolvable distance. Along with the variation of pipe geometry, several important conclusions are drawn about the change rules of the L(0,2) and L(0,1) modes dispersion characteristics. For the L(0,2) mode, when the pipe inner-radius-thickness ratio is great than or equal to 4, the lower limiting frequencies diameter product is about 4.0 MHz·mm, and the upper limiting frequencies thickness product is about 1.06 MHz·mm. For the L(0,1) mode in small tubes the upper limiting frequencies diameter product is about 0.81MHz·mm. These simple function relationships provide reference for quickly determining the frequencies of non-dispersive region in pipe inspection.