结构工程师
結構工程師
결구공정사
STRUCTURAL ENGINEERS
2014年
5期
117-123
,共7页
王国弢%胡克旭%雷敏
王國弢%鬍剋旭%雷敏
왕국도%호극욱%뢰민
矩震级%阻尼调整系数%周期%阻尼比%重要持时
矩震級%阻尼調整繫數%週期%阻尼比%重要持時
구진급%조니조정계수%주기%조니비%중요지시
moment magnitude%damping scaling factor%period%damping ratio%significant duration
基于408条地震地面运动记录统计分析,首先研究了矩震级( Mw )对位移谱阻尼调整系数( DSF )的影响。结果表明:Mw 对DSF的影响与周期( T )和阻尼比(ξ)有关;在T >0.6 s的范围内,当ξ<5%时, DSF随着Mw的增长而增长;当ξ>5%时, DSF随着Mw的增长而减小。随着T的增长, Mw 对DSF的影响越显著;ξ越远离5%, Mw对DSF的影响越显著。在T <0.6 s的范围内, Mw对DSF无显著影响;当Mw =5~6时, DSF受T的影响显著;随着Mw的增大,在T >~0.6 s范围内, DSF受T的影响逐渐减弱;当Mw =7~8时,在T >0.6 s范围内,除阻尼比为0.5%和1%的DSF外, DSF基本不随T而变化;DSF相对于ξ存在异方差性。然后提出了只考虑周期和阻尼比影响的DSF回归方程,计算出在指定周期和阻尼比处的残差,根据在长周期处该回归方程的残差随Mw 显直线分布,最后提出了包含线性矩震级项的DSF回归模型并给出了模型的回归系数。该模型的残差随Mw 和相对能量持时( D5-95)的分布表明:模型能体现Mw对DSF的影响,能间接地体现D 5-95对DSF的影响。模型的标准差能体现DSF相对于ξ的异方差性。
基于408條地震地麵運動記錄統計分析,首先研究瞭矩震級( Mw )對位移譜阻尼調整繫數( DSF )的影響。結果錶明:Mw 對DSF的影響與週期( T )和阻尼比(ξ)有關;在T >0.6 s的範圍內,噹ξ<5%時, DSF隨著Mw的增長而增長;噹ξ>5%時, DSF隨著Mw的增長而減小。隨著T的增長, Mw 對DSF的影響越顯著;ξ越遠離5%, Mw對DSF的影響越顯著。在T <0.6 s的範圍內, Mw對DSF無顯著影響;噹Mw =5~6時, DSF受T的影響顯著;隨著Mw的增大,在T >~0.6 s範圍內, DSF受T的影響逐漸減弱;噹Mw =7~8時,在T >0.6 s範圍內,除阻尼比為0.5%和1%的DSF外, DSF基本不隨T而變化;DSF相對于ξ存在異方差性。然後提齣瞭隻攷慮週期和阻尼比影響的DSF迴歸方程,計算齣在指定週期和阻尼比處的殘差,根據在長週期處該迴歸方程的殘差隨Mw 顯直線分佈,最後提齣瞭包含線性矩震級項的DSF迴歸模型併給齣瞭模型的迴歸繫數。該模型的殘差隨Mw 和相對能量持時( D5-95)的分佈錶明:模型能體現Mw對DSF的影響,能間接地體現D 5-95對DSF的影響。模型的標準差能體現DSF相對于ξ的異方差性。
기우408조지진지면운동기록통계분석,수선연구료구진급( Mw )대위이보조니조정계수( DSF )적영향。결과표명:Mw 대DSF적영향여주기( T )화조니비(ξ)유관;재T >0.6 s적범위내,당ξ<5%시, DSF수착Mw적증장이증장;당ξ>5%시, DSF수착Mw적증장이감소。수착T적증장, Mw 대DSF적영향월현저;ξ월원리5%, Mw대DSF적영향월현저。재T <0.6 s적범위내, Mw대DSF무현저영향;당Mw =5~6시, DSF수T적영향현저;수착Mw적증대,재T >~0.6 s범위내, DSF수T적영향축점감약;당Mw =7~8시,재T >0.6 s범위내,제조니비위0.5%화1%적DSF외, DSF기본불수T이변화;DSF상대우ξ존재이방차성。연후제출료지고필주기화조니비영향적DSF회귀방정,계산출재지정주기화조니비처적잔차,근거재장주기처해회귀방정적잔차수Mw 현직선분포,최후제출료포함선성구진급항적DSF회귀모형병급출료모형적회귀계수。해모형적잔차수Mw 화상대능량지시( D5-95)적분포표명:모형능체현Mw대DSF적영향,능간접지체현D 5-95대DSF적영향。모형적표준차능체현DSF상대우ξ적이방차성。
The influence of moment magnitude ( Mw ) on damping scaling factor ( DSF) was firstly investigated based on the statistical analysis of 408 earthquake ground motion records .It is showed that the effect of Mw on DSF depends on period of vibration ( T) and damping ratio (ξ) .The DSF increases as Mw increases for the periods greater than about 0.6 s ifξ<5%, but it decreases ifξ>5%.The pattern with Mw is much more sig-nificant as T increases orξdeviates from 5%.Almost no pattern with Mw is seen for the periods less than about 0.6 s.DSF is significantly affected by T when Mw =5~6.The influence of T on DSF becomes less significant with the increase of Mw for the periods greater than about 0.6 s.When Mw =7 ~8 DSF does not basically change with T within the range of periods greater than 0.6 s except DSF corresponding to 0.5% and 1%damping .The heteroscedasticity in the DSF with respect to ξexists.Then DSF regression equation was pro-posed that only depends on T andξand equation residuals was calculated at specified T andξ.Finally accord-ing to the residual plots showing an almost linear relationship with Mw at long periods , the regression model that includes a linear magnitude term was proposed and regression coefficients were tabulated .Residual analysis shows that the proposed model can reflect the influence of Mw on DSF and can indirectly reflect the influence of significant duration ( D5-95 ) on DSF .The standard deviation of the model can reflect heteroscedasticity in the DSF with respect toξ.