机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
21期
164-173
,共10页
航空发动机%轴承腔%均匀流体%壁面油膜%油气两相
航空髮動機%軸承腔%均勻流體%壁麵油膜%油氣兩相
항공발동궤%축승강%균균류체%벽면유막%유기량상
aeroengine%bearing chamber%homogeneous fluid%wall oil film%air/oil two-phase
航空发动机轴承腔精确的润滑与换热设计依赖于对其内油气两相润滑介质流动与换热本质的认识。针对轴承腔内复杂的油气两相润滑介质流动状态,建立轴承腔均匀流体/壁面油膜分层流动分析模型,开展腔内油气两相润滑介质流动特性研究,探讨转子转速和润滑油供油量对均匀流体和壁面油膜两相介质压力、速度以及温度分布的影响。分析模型中,气相介质(含油滴)的等效物理特征参数通过离散油滴和气相介质的组分比例关系确定,各固体壁面与流体介质的对流换热系数根据其各自的传热特性确定。研究结果表明,均匀流体与壁面油膜两相介质的压力随着润滑油供油量的增加而增大,受转子转速的影响较为复杂;均匀流体与壁面油膜两相介质的速度随着转子转速的增高而增大,受润滑油供油量影响较小;均匀流体的温度随着润滑油供油量的增加而减小,受转子转速的影响较小;与均匀流体温度不同,壁面油膜的温度随着转子转速的增加而增大,随着润滑油供油量的增加而减小。建立了轴承腔试验台系统,开展了轴承腔油气两相流动状态下的压力和温度测试,压力和温度试验结果与理论计算结果均具有较好的吻合性,验证了提出的理论分析方法的可靠性。
航空髮動機軸承腔精確的潤滑與換熱設計依賴于對其內油氣兩相潤滑介質流動與換熱本質的認識。針對軸承腔內複雜的油氣兩相潤滑介質流動狀態,建立軸承腔均勻流體/壁麵油膜分層流動分析模型,開展腔內油氣兩相潤滑介質流動特性研究,探討轉子轉速和潤滑油供油量對均勻流體和壁麵油膜兩相介質壓力、速度以及溫度分佈的影響。分析模型中,氣相介質(含油滴)的等效物理特徵參數通過離散油滴和氣相介質的組分比例關繫確定,各固體壁麵與流體介質的對流換熱繫數根據其各自的傳熱特性確定。研究結果錶明,均勻流體與壁麵油膜兩相介質的壓力隨著潤滑油供油量的增加而增大,受轉子轉速的影響較為複雜;均勻流體與壁麵油膜兩相介質的速度隨著轉子轉速的增高而增大,受潤滑油供油量影響較小;均勻流體的溫度隨著潤滑油供油量的增加而減小,受轉子轉速的影響較小;與均勻流體溫度不同,壁麵油膜的溫度隨著轉子轉速的增加而增大,隨著潤滑油供油量的增加而減小。建立瞭軸承腔試驗檯繫統,開展瞭軸承腔油氣兩相流動狀態下的壓力和溫度測試,壓力和溫度試驗結果與理論計算結果均具有較好的吻閤性,驗證瞭提齣的理論分析方法的可靠性。
항공발동궤축승강정학적윤활여환열설계의뢰우대기내유기량상윤활개질류동여환열본질적인식。침대축승강내복잡적유기량상윤활개질류동상태,건립축승강균균류체/벽면유막분층류동분석모형,개전강내유기량상윤활개질류동특성연구,탐토전자전속화윤활유공유량대균균류체화벽면유막량상개질압력、속도이급온도분포적영향。분석모형중,기상개질(함유적)적등효물리특정삼수통과리산유적화기상개질적조분비례관계학정,각고체벽면여류체개질적대류환열계수근거기각자적전열특성학정。연구결과표명,균균류체여벽면유막량상개질적압력수착윤활유공유량적증가이증대,수전자전속적영향교위복잡;균균류체여벽면유막량상개질적속도수착전자전속적증고이증대,수윤활유공유량영향교소;균균류체적온도수착윤활유공유량적증가이감소,수전자전속적영향교소;여균균류체온도불동,벽면유막적온도수착전자전속적증가이증대,수착윤활유공유량적증가이감소。건립료축승강시험태계통,개전료축승강유기량상류동상태하적압력화온도측시,압력화온도시험결과여이론계산결과균구유교호적문합성,험증료제출적이론분석방법적가고성。
The accurate lubrication and heat transfer designs of an aeroengine bearing chamber require an understanding of the complex air/oil two-phase flow characteristics in the chamber. A homogeneous fluid/wall oil film two-phase stratified flow model is proposed to investigate the air/oil two-phase lubrication medium flow in an aeroengine bearing chamber, and the effects of shaft speed and oil mass flow rate on the pressure, flow velocity and temperature for the homogeneous fluid and wall oil film are discussed in detail. In the model, the equivalent physical feature parameters of air (containing droplets) are determined by the component rate of droplets and air in the mixture of air and droplets, and the convection heat transfer coefficients between relevant walls and fluid medium in the bearing chamber are calculated by their convection heat transfer characteristics, respectively. The calculation results show preliminarily that the pressures of the homogenous fluid and wall oil film increase with increasing oil mass flow rate, and are influenced complexly by shaft speed;that the flow velocities of the homogenous fluid and wall oil film increase with increasing shaft speed, and are influenced insignificantly by oil mass flow rate;that the homogenous fluid temperature decreases with increasing oil mass flow rate, and are influenced slightly by shaft speed;and that the wall oil film temperature increases with increasing shaft speed and decreasing oil mass flow rate. Finally, a bearing chamber experimental facility is built, and the pressure and temperature under the air/oil two-phase flow condition are measured in the bearing chamber. The calculation results agree well with experimental data.